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Critical Thinking in Aquifer Test Interpretation 
 
Interpretation of pumping tests in aquifers with linear boundaries 
 
Christopher J. Neville 
S.S. Papadopulos & Associates, Inc. 
Last update: April 28, 2025 
 
Overview 
 
Although all aquifers are bounded, when we interpret the results of short-term pumping 
tests, we frequently ignore the presence of boundaries. In many cases of practical 
significance, neglecting the boundaries may be highly restrictive. It may limit our 
analysis to the consideration of drawdown from only the first few minutes or hours of 
pumping. Furthermore, such idealized analyses do not provide much insight into the 
effects that boundaries may have on the response to pumping. 
 
These notes have been prepared to provide an introduction to the interpretation of 
pumping tests where boundaries are relatively close to the pumping well. To illustrate 
some basic concepts, we will consider three idealized cases that are amenable to 
treatment with an analytical approach: 
 
• Aquifers with one linear constant-head boundary; 
• Aquifers with one linear impermeable boundary; and 
• Aquifers with two linear impermeable boundaries (channel aquifers). 
 
We recognize from the outset that there may be cases in which complex boundary 
conditions may not be amenable to such simple analyses. Where boundaries and 
additional sources/sinks are located relatively close to the pumping well, the analyst may 
have to develop a numerical model to interpret the drawdown data. 
 
Outline 
 
1. Aquifers with a single linear constant-head boundary 
2. Aquifers with a single impermeable boundary 
3. Generalization of the results for a single linear boundary 
4. Aquifers with two linear impermeable boundaries (channel aquifers) 
5. Case study: Estevan, Saskatchewan 
6. Key points 
7. References 
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1. Aquifers with a single linear constant-head boundary 
 
As with all pumping tests, the Theis model is the starting point for the interpretation of 
tests conducted in bounded aquifers. The Theis problem is linear; neither the coefficients 
appearing in the governing equation, nor the boundary conditions depend upon the 
drawdown. The property of linearity has important implications for the interpretation of 
pumping test data. For linear problems, we can derive solutions to complex problems by 
adding together solutions for simpler cases, a procedure referred to as superposition. 
Pumping tests conducted near a linear boundary (for example, a stream or a fault) can be 
interpreted by superposing Theis solutions in space, using what are referred to as image 
wells. 
 
For the case of a linear constant-head boundary, the drawdown along the boundary is 
zero. As shown in Figure 1, a linear boundary with zero drawdown is simulated with an 
imaginary well placed an equal distance from the boundary, pumping at a rate equal in 
magnitude, but opposite in sign, to the actual well. 
 
 

 
 

Figure 1. Application of image theory for a single linear constant-head boundary 
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The drawdown due to the pair of real and imaginary wells is: 
 

 𝑠𝑠 = 𝑄𝑄
4𝜋𝜋𝜋𝜋

𝑊𝑊 �𝑟𝑟
2𝑆𝑆
4𝑇𝑇𝑇𝑇
� − 𝑄𝑄

4𝜋𝜋𝜋𝜋
𝑊𝑊 �𝑟𝑟′

2𝑆𝑆
4𝑇𝑇𝑇𝑇

� 
 
where r is the distance between the real well and the observation well, and r’ is the 
distance between the imaginary well and the observation well. Example calculations are 
shown in Figure 2. When a well is pumped near a constant head boundary, we observe 
two intervals of distinct response. During the early period, the observation well responds 
as if there were no boundary at all. The drawdown stabilizes after the effects of pumping 
propagate to the boundary. 
 

 
 

Figure 2. Pumping test in an aquifer with a single linear constant-head boundary 
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If we use the Cooper-Jacob approximation for the Theis well function, the drawdown is 
given by: 
 
 𝑠𝑠 = 𝑄𝑄

4𝜋𝜋𝜋𝜋
�−0.5772 − 𝑙𝑙𝑙𝑙 �𝑟𝑟

2𝑆𝑆
4𝑇𝑇𝑇𝑇
�� − 𝑄𝑄

4𝜋𝜋𝜋𝜋
�−0.5772 − 𝑙𝑙𝑙𝑙 �𝑟𝑟′

2𝑆𝑆
4𝑇𝑇𝑇𝑇

�� 
 
Using the properties of the log function, the expanded solution reduces to the simple 
expression: 
 
 𝑠𝑠 = 𝑄𝑄

4𝜋𝜋𝜋𝜋
𝑙𝑙𝑙𝑙 �𝑟𝑟’2

𝑟𝑟2
�  

 

           =
𝑄𝑄

2𝜋𝜋𝜋𝜋
𝑙𝑙𝑙𝑙 �

𝑟𝑟′
𝑟𝑟
� =

𝑄𝑄
2𝜋𝜋𝜋𝜋

2.303 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑟𝑟′
𝑟𝑟
� 

 
The Cooper-Jacob approximation in this case is independent of time. 
 
Late-time derivative 
 
The derivative is defined as: 
 
 𝐷𝐷𝑡𝑡(𝑠𝑠) = 𝜕𝜕𝜕𝜕

𝜕𝜕(𝑙𝑙𝑙𝑙{𝑡𝑡}) 

             = 𝜕𝜕
𝜕𝜕(𝑙𝑙𝑙𝑙{𝑡𝑡}) �

𝑄𝑄
2𝜋𝜋𝜋𝜋

𝑙𝑙𝑙𝑙 �𝑟𝑟′
𝑟𝑟
�� = 0 

 
The presence of a constant-head boundary is indicated by a decline in the derivative to a 
value of zero. 
 
 𝐷𝐷𝑡𝑡(𝑠𝑠) → 0 
 
The decline in the derivative is diagnostic of recharge effects acting to attenuate 
drawdowns. The stabilization of the derivative for a single linear constant-head boundary 
is shown in Figure 3. 
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 Figure 3. Pumping test in an aquifer with a single linear constant-head boundary 
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2. Aquifers with a single impermeable boundary 
 
For the case of a linear no-flow boundary, the linear boundary is a line of symmetry. As 
shown in Figure 4, this is simulated with an imaginary well placed an equal distance from 
the boundary, pumping at the same rate as the real well. 
 
 

 
 

Figure 4. Application of image theory for a single linear impermeable boundary 
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The drawdown due to the pair of real and imaginary wells is: 
 

𝑠𝑠 =
𝑄𝑄

4𝜋𝜋𝜋𝜋
𝑊𝑊�

𝑟𝑟2𝑆𝑆
4𝑇𝑇𝑇𝑇

� +
𝑄𝑄

4𝜋𝜋𝜋𝜋
𝑊𝑊�

𝑟𝑟′2𝑆𝑆
4𝑇𝑇𝑇𝑇

� 

 
This solution differs from the solution for a constant-head boundary by the sign on the 
pumping rate for the imaginary well. Example calculations are shown in Figure 5. When 
a well is pumped near an impermeable boundary, we observe two intervals of distinct 
response. During the early period, the observation well responds as if there were no 
boundary at all. The drawdown steepens after the effects of pumping propagate to the 
boundary, and the slope on the semilog plot eventually doubles. 
 
 

 
 

Figure 5. Pumping test in an aquifer with a single linear impermeable boundary 
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If we use the Cooper-and Jacob (1946) approximation for the Theis well function, the 
drawdown is given by: 
 

𝑠𝑠 =
𝑄𝑄

4𝜋𝜋𝜋𝜋
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Using the properties of the log function, this reduces to: 
 

𝑠𝑠 =
𝑄𝑄
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Late-time derivative 
 
The derivative of the Cooper-Jacob approximation is given by: 
 
 𝐷𝐷𝑡𝑡(𝑠𝑠) = 𝜕𝜕

𝜕𝜕(𝑙𝑙𝑙𝑙{𝑡𝑡}) �
𝑄𝑄
2𝜋𝜋𝜋𝜋
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            =
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2𝜋𝜋𝜋𝜋
 

 
The derivative of the Cooper-Jacob approximation for an infinite aquifer is given by: 
 
 𝐷𝐷𝑡𝑡(𝑠𝑠) = 𝑄𝑄

4𝜋𝜋𝜋𝜋
 

 
We see that the later-time derivative for a linear impermeable boundary is double the 
derivative for an infinite aquifer. 
 
The doubling of the derivative is diagnostic of the effect of a single linear impermeable 
boundary. The doubling of the derivative is illustrated in the example calculations shown 
in Figure 6. 
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 Figure 6. Pumping test in an aquifer with a single linear impermeable boundary 
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3. Generalization of the results for a single linear boundary 
 
It is unlikely that the connection between a real aquifer and a constant-head feature is 
perfect or that real boundaries are truly impermeable. The boundaries that we may 
observe may actually be the interface between the aquifer and regions of relatively higher 
or lower transmissivity. With respect to interfaces with regions with different properties, 
the results from the two cases we have examined are important as they effectively bracket 
the range of responses that may be observed during a pumping test adjacent to a linear 
boundary: 
 

• K-Zone 2 >> K-Zone 1 → Linear constant-head condition; and 
• K-Zone 2 << K-Zone 1 → Linear no-flow condition. 

 
This concept is illustrated with the results of numerical model simulations. A 
two-dimensional confined aquifer that is 10 m thick is shown in Figure 7. The model 
contains two uniform zones. The pumping and observation wells are located in Zone 1 of 
the aquifer, which is assigned a hydraulic conductivity of 10 m/d. The well pumps at a 
constant rate of 50 m3/d. The observation well is located 100 m away, midway to 
interface with Zone 2. 
 

 
 

Figure 7. Conceptual model of pumping near a contrast in hydraulic conductivity 
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The drawdowns at the observation wells are plotted in Figure 8, for hydraulic 
conductivities of Zone 2 ranging from 1 m/d to 100 m/d. Up to about 0.01 days, the 
drawdowns are the same for all three cases. This reflects the fact that the effects of 
pumping are initially contained with Zone 1. After some time, the effects of pumping 
propagate from Zone 1 to Zone 2, encountering a region with different hydraulic 
conductivity. The results indicated for KH = 10 m/d correspond to the “benchmark” 
results for an aquifer with uniform properties. For a Zone 2 hydraulic conductivity less 
than 10 m/d, the rate of drawdown increases relative to the benchmark, and for a Zone 2 
hydraulic conductivity greater than 10 m/d the rate of drawdown is attenuated. 
 

 
 

Figure 8. Drawdowns calculated for three values of KH in Zone 2 

0.001 0.01 0.1 1
Elapsed time (days)

0

0.5

1

1.5

2

2.5

3

3.5

Dr
aw

do
w

n 
(m

)

K
H
 = 1 m/d

K
H
 = 10 m/d

K
H
 = 100 m/d



 
  Page 12 of 52 

 
P:\0996-XX_GAC-MAC\Notes\04_Pumping tests in aquifers with linear boundaries\04_02_Interpretation of pumping tests in aquifers with 
linear boundaries_Notes.docx 

To better understand the results of our simulations, we have added the results from 
analytical solutions with the Theis solution. As shown in Figure 9, the drawdowns for 
higher conductivities in Zone 2 approach the results obtained with the Theis solution with 
a single constant-head boundary. The drawdowns for lower conductivities in Zone 2 
approach the results obtained with the Theis solution with a single no-flow boundary. 
 

 
 

Figure 9. Drawdowns for contrasts in hydraulic conductivity 
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An expanded view of Figure 9 is shown in Figure 10 with the derivative plots added. 
 

 
 

Figure 10. Drawdowns for extreme contrasts in hydraulic conductivity, 
Derivative plots added 
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4. Aquifers with two linear impermeable boundaries (channel aquifers) 
 
Buried channel aquifers are important conduits for groundwater in many areas of North 
America. Preliminary maps of delineated buried channel aquifers in Canada are shown in 
Figure 10. In western Canada, significant pre-glacial paleochannels have been filled with 
highly permeable sediments and subsequently overlain by low permeability glacial tills. 
Buried channel aquifers have been delineated in Alberta (see for example 
Farvolden, 1963) and Saskatchewan (see for example van der Kamp and 
Maathuis, 2002). Contrary to what is suggested in Figure 11, studies also suggest that 
there are buried channel aquifers in Manitoba (Betcher and others, 2005). Buried channel 
aquifers may also play a significant role in the hydrogeology of southern Ontario 
(Russell, Hinton, van der Kamp, and Sharpe, 2004). 
 

 
 

Figure 11. Delineated buried channel aquifers in Canada 
(from Russell, Hinton, van der Kamp, and Sharpe, 2004) 
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4.1 Conceptual model for a buried channel aquifer 
 
An essential aspect of buried channel aquifers that controls their response to pumping is 
the proximity of boundaries. For relatively brief tests, it may be appropriate to ignore the 
presence of boundaries. This assumption may be too restrictive for channel aquifers. It 
may limit our analysis to a consideration of drawdowns from only the first few minutes 
or hours of pumping. The application of an infinite-aquifer analysis does not provide 
much insight into understanding the effects that boundaries have on the response to 
pumping, and may provide misleading impressions of the long-term yield of a well. 
 
The idealized conceptual model for a buried channel aquifer is shown in Figure 12. In 
reality, these aquifers wind their way beneath the present landscape and may have highly 
heterogeneous distributions of material properties. 
 
 

 
 

Figure 12. Conceptual model for a buried channel aquifer 
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An analytical model of a channel aquifer can be assembled using the Theis solution with 
superposition of image wells. Kruseman and de Ridder (1990; p. 114) present the 
following formula for pumping between two linear impermeable boundaries: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) =
𝑄𝑄

4𝜋𝜋𝜋𝜋
�𝑊𝑊(𝑢𝑢) + �𝑊𝑊(𝐴𝐴𝑟𝑟𝑟𝑟2 𝑢𝑢)

𝑁𝑁

𝑖𝑖=1

� 

 
where i through N are the image wells. The quantity Ari is defined as: 
 

𝐴𝐴𝑟𝑟𝑟𝑟 =
𝑟𝑟𝑖𝑖
𝑟𝑟

 
 
Here r is the distance between the real well and the observation well, and ri is the 
distance between the image well i and the observation well. The set-up of the image wells 
is shown in Figure 13. The black circle indicates the real well. The white circles indicate 
the image wells, all of which pump at the same rate as the real well. 
 
 

 
 

Figure 13. Image well set-up for a buried channel aquifer 
 
 
Kruseman and De Ridder’s formula is presented without a derivation. A good 
development of the theory of image wells is presented in Ferris and others (1962; p. 144). 
 
In theory, an infinite number of image wells is required. In practice the calculations 
frequently converge for a relatively small number; however, there may be cases in which 
many image wells are required to evaluate the solution correctly. The number of image 
wells required depends on the location of the observation well and the elapsed time, and, 
in my experience, there is no easy way to anticipate how much computational effort is 
appropriate. A convergence analysis is generally required, in which the number of image 
wells is increased until the addition of another image well has negligible effect on the 
calculated drawdowns. 
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Vandenburg (1977) and Motz (1991) developed type curves for the interpretation of 
pumping tests in channel aquifers. van der Kamp and Maathuis (2002) demonstrated the 
application of these type curves in the context of a case study in Saskatchewan. The 
capability to interpret tests in channel aquifers is incorporated in AQTESOLV (versions 
Version 3.71.003 and later). The results of benchmark analyses are presented here to 
check the implementation of this capability and to develop our intuition regarding the 
responses to pumping in buried channel aquifers. 
 
 
4.2 Benchmark analysis for pumping from a buried channel aquifer 
 
Benchmark results are calculated using the finite-difference simulation code 
MODFLOW. We consider a perfectly confined aquifer with uniform thickness, and 
uniform, isotropic transmissivity. The aquifer is relatively long and thin, and is truncated 
along its left and right by impermeable boundaries. The conceptual model for the 
problem is shown in Figure 14. 
 

 
 

Figure 14. Schematic of MODFLOW model of a buried channel aquifer 
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Parameters 
 
• Aquifer width, W = 510 m 
• Transmissivity, T = 8.64 m2/day (medium sand, KH =10-3 cm/sec, B = 10 m) 
• Storativity, S = 10-4 
• Pumping rate, Q =109.02 m3/day (20 US gpm) 
 
The coordinates of the wells are listed below. 
 

Well x-coordinate (m) y-coordinate (m) 
PW-1 0.0 0.0 
OW-1 20.0 0.0 
OW-2 50.0 0.0 

 
MODFLOW model 
 
• A single model layer is used to represent the aquifer with an arbitrary thickness of 

1.0 m; 
• The model is discretized with 51 columns across its width, with a uniform spacing of 

10.0 m; 
• By necessity, the model must also be truncated along its north and south boundaries.  

The aquifer is 2000 m long, and is discretized with 200 rows along its length, with a 
uniform spacing of 10.0 m; and 

• The duration of the simulation is 10 days. A single stress period is divided into 200 
time steps, with a time-step multiplier of 1.1. 

 
The analytical solution that we will compare with the MODFLOW results is based on the 
assumption that the aquifer is infinitely long. In this example, the duration of pumping is 
sufficiently long that the effects of pumping extend to the north and south boundaries of 
the model, violating this assumption. To assess the boundary effects, two numerical 
simulations are conducted with different boundary conditions along the north and south 
boundaries of the model: 
 
• Analysis #1: Constant-head conditions; and 
• Analysis #2: No-flow conditions. 
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Results for constant-head conditions along the north and south boundaries 
 
The results for constant-head conditions along the north and south model boundaries of 
the MODFLOW model are shown in Figure 15. The match between AQTESOLV and the 
MODFLOW results is excellent. A comparison of the two sets of results suggests that the 
north and south boundaries manifest themselves after about 3 days of pumping. As 
expected, the drawdowns calculated with the numerical model eventually decline below 
the analytical solution. 
 

 
 

Figure 15. Comparison of drawdowns, constant-head conditions 
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Results for no-flow conditions along the north and south boundaries 
 
The results for no-flow conditions along the north and south model boundaries of the 
MODFLOW model are shown in Figure 16. The match between AQTESOLV and the 
MODFLOW results is again excellent. A comparison of the two sets of results suggests 
that the influence of the north and south boundaries is detected about 3 days of pumping. 
Beyond that time, the drawdowns calculated with the numerical model exceed those 
predicted by the analytical solution. 
 

 
 

Figure 16. Comparison of drawdowns, no-flow conditions 
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4.3 Diagnostic plots for buried channel aquifers 
 
The most appropriate way to diagnose the response to pumping in a channel aquifer is 
with separate plotting approaches for early and late time, including the derivative plots. A 
semi-log diagnostic plot for the early time response for OW-1 is shown in Figure 17. The 
semi-log straight line plot of the drawdown and the plateau of the derivative are 
characteristic of the infinite aquifer response that precedes the drawdown cone expanding 
to the boundaries. The derivative increases rapidly beyond the departure from the 
infinite-aquifer response and shows no sign of stabilizing. These results demonstrate that 
the presence of two linear no-flow boundaries causes more than a simple doubling of the 
slope on a semilog plot. 
 

 
 

Figure 17. Drawdown and derivative plots for the analytical solution 
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Another way to look at the response for OW-1 is shown in Figure 18. In this figure, the 
drawdowns and derivatives for the analytical solution are plotted on log-log axes. This 
alternative form provides two more diagnostic suggestions of a channel aquifer. For later 
times, the drawdown and derivative plot as straight lines on log-log axes. The late-time 
slope of the drawdown is 1 log cycle of drawdown vs. 2 log cycles of time. This slope is 
characteristic of a linear flow regime. 
 

 
 

Figure 18. Drawdown and derivative plots for the analytical solution: log-log axes 

10-4 10-3 10-2 10-1 100 101

Time (days)

0.001

0.01

0.1

1

10

100

D
ra

w
do

w
n 

(m
), 

D
ra

w
do

w
n 

de
riv

at
iv

e 
(m

)

Drawdown
Derivative
Theis (infinite aquifer)

OW-1
HALF-SLOPE 



 
  Page 23 of 52 

 
P:\0996-XX_GAC-MAC\Notes\04_Pumping tests in aquifers with linear boundaries\04_02_Interpretation of pumping tests in aquifers with 
linear boundaries_Notes.docx 

5. Case study: Estevan, Saskatchewan 
 
In March 1965, the Saskatchewan Research Council conducted a pumping test in an 
aquifer about 13 miles northwest of Estevan, Saskatchewan. In this case study, we revisit 
the original analysis of the pumping test presented in Walton (1970). The original 
analysis made use of data from the first few minutes of a long-term test. The data are re-
examined using composite plots and derivative analysis. A re-analysis of the complete 
data set is conducted using an analytical approach for channel aquifers that incorporates 
the effects of the boundaries. 
 
The aquifer is a long, sinuous paleochannel infilled with permeable sand and gravel and 
overlain by about 150 m of low-permeability glacial till. The geologic data available at 
the time of the pumping test suggested that the aquifer was a strip of sand and gravel 
approximately 1,700 feet wide, trending north-northwest through the production well. 
Descriptions of the hydrogeology of the Estevan area and the responses to pumping are 
presented in the excellent papers of van der Kamp and Maathuis (2002) and Maathuis and 
van der Kamp (2003). 
 
The location of the pumping test site is shown in Figure 19. The generalized stratigraphic 
logs and construction features of the wells are shown in Figure 20. The wells were all 
screened in approximately the same depth intervals and are open to the coarse sand and 
gravel materials near the base of the glacial deposits. Johnson stainless steel continuous-
slot screens were installed at selected depth intervals. 
 
  



 
  Page 24 of 52 

 
P:\0996-XX_GAC-MAC\Notes\04_Pumping tests in aquifers with linear boundaries\04_02_Interpretation of pumping tests in aquifers with 
linear boundaries_Notes.docx 

 
 

 
 

Figure 19. Locations of wells monitored during Estevan pumping test 
Reproduced from Walton (1970) 
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Figure 20. Geologic logs and completion details for wells 
Reproduced from Walton (1970) 
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Pumping test data 
 
Pumping started at 3:00 PM on March 4 and continued at a constant rate of 460 Igpm 
until 2:00 PM on March 12.  The duration of pumping was 11,520 minutes. The pumping 
rate was held constant by means of a gate valve installed in the discharge pipe. A circular 
orifice and a manometer tube installed in the end of the discharge pipe were used to 
measure the rate of pumping. The rate of pumping varied between 457 Igpm and 
464 Igpm. 
 
Water levels were measured at the production well and at three observation wells. Water 
levels in the production well were frequently measured with a steel tape; water levels in 
the observation wells were continuously measured by means of recording gages. 
Atmospheric-pressure changes were measured with a recording Belfort microbarometer. 
 
Drawdowns in the wells were determined by comparing water levels measured before 
pumping started with water levels measured during the pumping period. The drawdowns 
were corrected for changes in atmospheric pressure. The drawdowns in the wells at the 
end of the test are tabulated below. 
 

Well Drawdown at end of test (ft) 
Production well 16.03 

Observation well 1 10.97 
Observation well 2 10.88 
Observation well 3 9.54 

 
A drawdown of 0.59 foot was observed in well GSC-3A which penetrated the lower 
aquifer about 9 miles northeast of the production well. This drawdown indicates that 
cones of depression under heavy pumping conditions may spread to great distances. 
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Original analysis (Walton, 1970) 
 
Walton remarked that observation wells 1 and 2 were close to the pumped well and their 
time-drawdown curves were relatively flat. Analysis of the time-drawdown curves for 
these wells was most difficult and emphasis was placed on the time-drawdown graph for 
observation well 3 in determining T and S. The original analysis of Walton (1970) for 
observation well 3 is reproduced in Figure 21. 
 

 
 

Figure 21. Original analysis 
Reproduced from Walton (1970) 
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Walton interpreted the test data using the Theis type-curve matching method. As shown 
in Figure 21, Walton matched the type curve to early time-drawdown data. The 
coordinates of the match point are: 
 

• u = 0.1; 
• W(u) = 1.0; 
• t = 14 min; and 
• s = 0.28 ft. 

 
The type curve matching yielded a transmissivity of 188,000 Igpd/ft (30,220 ft2/day) and 
storativity of 0.00022, respectively. According to Walton, the transmissivity is very high 
and the storage coefficient is in the normal range for a confined aquifer. 
 
After about 3 minutes of pumping, the time-rate of drawdown in the observation wells 
increased and field data deviated upward from the type-curve trace, indicating the 
presence of a barrier boundary. The type curve was again matched to drawdown data for 
time values between 3.5 and 8.0 minutes. After about 8 minutes, the time-rate of 
drawdown again increased, indicating the presence of a second barrier boundary. The 
type curve was again matched to drawdown data for time vales between 8 and 
15 minutes. The divergence of the three type-curve traces was determined and the 
distances from the observation wells to image wells associated with the two barrier 
boundaries were calculated. 
 
We object to several aspects of Walton’s original analysis. There are at least four reasons 
why we cannot place much reliability in the transmissivity estimated in the original 
analysis: 
 
• The analysis ignored essential aspects of the site. Walton (1970) describes these 

aspects clearly but they are not incorporated in the analysis; 
• The analysis was conducted on a well-by-well basis; 
• The analysis focused on only the very earliest portion of the test. For observation well 

#3, the transmissivity was estimated based on data from only the first 3 minutes of a 
test that lasted more than 10,000 minutes; and 

• No attempt is made to diagnose the response to pumping or to interpret the data with 
an analysis that incorporates the conceptual model for this site. 
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Alternative analyses 
 
Diagnostic plots 
 
A log-log plot of the drawdowns is presented in Figure 22. This is the key plot for 
identifying that we are pumping from a buried channel aquifer. As shown in the plot, 
towards the end of the test the drawdowns appear to approximate straight lines with a half 
slope (one log cycle of drawdown per two log cycles of time). The half-slope is 
characteristic of linear flow in a channel aquifer. 
 

 
 

Figure 22. Time-drawdown records on a log-log plot 
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The derivatives are plotted on log-log axes in Figure 23. The theoretical late-time 
derivative for a channel aquifer also has a half-slope of a log-log plot, and this is clearly 
evident in the Estevan data. 
 

 
 

Figure 23. Derivative plot on log-log axes 
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To estimate the bulk-average transmissivity we assemble the drawdowns on a semilog 
composite plot. The original drawdown data from all of the wells are re-plotted in 
Figure 24, with the abscissa being elapsed time divided by the square of the distance from 
the production well (t/r2). This plot is in effect a diagnostic plot for the early-time, 
infinite-aquifer response. 
 

 
 

Figure 24. Semilog composite plot 
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The early portions of the responses from all wells, including the production well, appear 
to converge on parallel straight lines on the semi-log composite plot shown in Figure 24. 
The parallel straight lines superimposed on the data in Figure 25 represent the 
combination of values of t/r2 over which the aquifer responds as a perfectly confined 
aquifer of infinite extent. 
 

 
 

Figure 25. Composite plot with infinite aquifer response 
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The derivative can also be used to confirm the diagnosis of the early portions of the 
aquifer response. The “raw” drawdown derivatives for all of the wells are shown in 
Figure 26. The derivative is calculated using the nearest-neighbor approach. 
 

 
 

Figure 26. Drawdown derivatives calculated with the nearest neighbour approach 
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The “raw” drawdown derivatives are not that rough. It is possible to identify gross trends. 
To improve the visualization, we apply a relatively small amount of smoothing. The 
“smoothed” drawdown derivatives for all of the wells are shown in Figure 27. We see 
that the drawdowns reach a plateau between 10 and 100 minutes, followed by a rapid 
increase. The presence of a plateau suggests that there is a period during which the 
aquifer responds as if it were unbounded, the period of Infinite Acting Radial Flow 
(IARF). The increasing rate of change beyond the IARF period is characteristic of a 
groundwater system with that is enclosed by more than one impermeable boundary. 
 

 
 

Figure 27. Smoothed drawdown derivatives 
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Estimation of transmissivity 
 
The Cooper and Jacob straight-line (CJSL) analysis on the composite plot provides a 
reliable basis for estimating the transmissivity. The slope and intercept of the linear 
portion of the data are 3.65 ft per log10 cycle of (t/r2), and (t/r2)0= 3.0×10-6, respectively. 
When these values are substituted into the Cooper and Jacob formulae, a transmissivity of 
21,000 ft2/d is estimated, along with a storativity of 1.0×10-4. 
 

 
 

Figure 28. Cooper-Jacob straight-line analysis 
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As a check on the estimation of the transmissivity and storativity, the estimated 
parameters are used to calculate the drawdown with the Theis solution. As shown in the 
log-log composite plot in Figure 29, the match between the theoretical solution and the 
common portions of the data from each observation well is excellent. The deviations 
from the Theis curve become very clear when the data are plotted in this format. 
 

 
 

Figure 29. Check on Cooper-Jacob straight-line analysis with Theis solution 
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Re-analysis of the Estevan test using a channel aquifer model 
 
As a final analysis, we retain the parameter estimates from the Cooper-Jacob analysis in 
Figure 28, but we invoke the model for a channel aquifer. The only change we make is 
that we assume the pumping well and observation wells are located in a long channel 
aquifer with impermeable walls. We don’t know how wide the channel is, or where the 
wells are located with respect to the valley walls. For simplicity, we will assume that the 
pumping well and the observation wells are located along the axis of the channel (x-axis). 
We will try to estimate the width of the channel through trial-and-error. 
 
For the following trials we retain the transmissivity estimated from the Cooper-Jacob 
composite analysis. 
 
Run 1: Channel width = 1,000 ft 
 

 
 
The results of the first guess of the channel width are shown in Figure 29. As shown in 
the figure, the Theis solution supplemented with image well analysis doesn’t match the 
observations particularly well, but the general trends appear to be correct. We are on to 
something. 
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Figure 29. Buried channel analysis for a valley 1,000 ft wide 
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Run 2: Channel width = 10,000 ft 
 

 
 
The results of the second guess of the channel width are shown in Figure 30. As shown in 
the figure, the Theis solution supplemented with image well analysis is much closer to 
reproducing both the magnitudes and trends of the observed drawdowns. One more trial 
ought to do it. 
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Figure 30. Buried channel analysis for a valley 10,000 ft wide 
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Run 3: Channel width = 8,000 ft 
 

 
 
The results of the third guess of the channel width are shown in Figure 31. As shown in 
the figure, the Theis solution supplemented with image well analysis matches closely the 
observed drawdowns with the transmissivity estimated from the Cooper-Jacob composite 
analysis. The corresponding derivative plot is shown in Figure 32. The match to the 
drawdowns reproduces the key trend in the derivative: a steeply increasing semilog rate 
of drawdown, with no suggestion of a late-time plateau. 
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Figure 31. Buried channel analysis for a valley 8,000 ft wide 
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Figure 32. Calculated drawdown derivative for a channel aquifer 8,000 ft wide 
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Additional analyses considering aquitard leakage 
 
In our previous analysis of the pumping test conducted in the Estevan Aquifer in 1965, 
we assumed that the aquifer is a perfectly confined strip. In reality, no aquifer is perfectly 
confined and if pumping continues sufficiently long we can expect to observe the effects 
of leakage across confining units. Here we demonstrate that the analysis for a confined 
strip aquifer can be generalized for an aquifer model that considers leakage. We will 
consider the simplest implementation of this conceptual model, the solution of Hantush 
and Jacob (1955). A conceptual model for the analysis is shown in Figure 33. 
 

 
 

Figure 33. Conceptual model for a strip aquifer with leakage 
[Cross-section transverse to the axis of the buried channel aquifer] 
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Analysis #1: Negligible leakage 
 
For a first analysis, we check that the AQTESOLV calculations with the Hantush-Jacob 
solution, with image wells representing the impermeable valley walls, are the same as 
those obtained with the Theis solution, when leakage is negligible. The results shown in 
Figure 34, for a leakage parameter 1/B = 10-6 ft-1, are identical to those obtained with the 
Theis solution. 
 
 

 
 

Figure 34. Hantush-Jacob analysis for a strip aquifer, 1/B = 10-6 ft-1 
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Analysis #2: More significant leakage 
 
Results with the Hantush-Jacob solution for a strip aquifer for a higher leakage parameter 
1/B = 4×10-5 ft-1 are shown in Figure 35. The results suggest that for this value of 1/B, it 
should have been possible to detect the stabilization caused by leakage by the end of the 
test. Since this is not the case, the results suggest that 1/B = 4×10-5 ft-1 is too high. 
 

 
 

Figure 35. Hantush-Jacob analysis for a strip aquifer, 1/B = 4×10-5 ft-1 
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Analysis #3: Reduced leakage 
 
Results with the Hantush-Jacob solution are shown in Figure 36 for a smaller value of the 
leakage parameter 1/B = 3×10-5 ft-1. The results of the analytical calculations are not 
inconsistent with the observations. 
 

 
 

Figure 36. Hantush-Jacob analysis for a strip aquifer, 1/B = 3×10-5 ft-1 
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The results shown in Figure 36 place an upper bound on the likely value of 1/B that can 
be inferred from the observations. What does a value of 1/B of 3×10-5 ft-1 tell us about the 
vertical hydraulic conductivity of the aquitard that overlies the Estevan Aquifer? 
 
The parameter 1/B is defined as: 
 

1
𝐵𝐵

= �𝐾𝐾 ′

𝑇𝑇𝑏𝑏′
 

 
Here K’ and b’ are the vertical hydraulic conductivity and thickness of the aquitard, 
respectively, and T is the transmissivity of the aquifer. 
 
Solving for K’ yields: 
 

𝐾𝐾 ′ = �
1
𝐵𝐵
�
2

𝑇𝑇𝑏𝑏′ 
 
• The transmissivity of the aquifer is estimated as 19,800 ft2/day. 
• The thickness of the aquitard is about 75 m (this is the “effective thickness” of the 

aquitard reported in van der Kamp and Maathuis, 2012). 
 
The upper bound estimate for the vertical hydraulic conductivity of the aquitard is: 
 

𝐾𝐾 ′ = (3 × 10−5 ft-1)2(19,380 ft2/d) �75 𝑚𝑚 �
3.281 ft

𝑚𝑚
�� 

      = 4.3 × 10−3 ft/d =   5 × 10−8 m/s  
 
van der Kamp and Maathuis (2012) suggested that a representative vertical hydraulic 
conductivity for the glacial till overlying the Estevan Aquifer is 1.8×10-10 m/s. This 
corresponds to a value of 1/B=3.2×10-6 ft-1. It is important to note that the vertical 
hydraulic conductivity estimated here represents an upper bound. It is certainly possible 
that the aquitard conductivity is less than 1.5×10-8 m/s. As suggested in Figure 37, it 
would have been necessary to continue pumping for much longer to infer the effects of 
aquitard leakage with a vertical hydraulic conductivity of 1.8×10-10 m/s. 
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Figure 37. Hantush-Jacob analysis for a strip aquifer, 1/B = 3.2×10-6 ft-1 
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6. Key points 
 
1. All aquifers are bounded. In many cases of practical significance, neglecting the 

boundaries may be highly restrictive. 
 
2. Pumping tests conducted near a linear boundary (for example, a stream or a fault) can 

be interpreted by superposing Theis solutions in space, using what are referred to as 
image wells. 

 
3. A linear constant-head boundary is simulated with an imaginary well placed an equal 

distance from the boundary, pumping at a rate equal in magnitude, but opposite in 
sign, to the actual well. 

 
4. A linear no-flow boundary is simulated with an imaginary well placed an equal 

distance from the boundary, pumping at a rate equal in magnitude, with the same 
sign, as the actual well. 

 
5. For a strip aquifer that is bounded on both sides by no-flow boundaries, an infinite 

number of image wells are required. In practice, the calculations frequently converge 
to the same result with a relatively small number of image wells. 

 
6. The application of the Derivative Analysis enhances our ability to diagnose the 

effects of boundaries. 
 
7. The composite plot is an effective method for synthesizing drawdown data and 

identifying the appropriate portion of the response for the estimation of aquifer 
properties. 
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projected net generally will no longer be a system of squares, and the 
equipotential and stream lines will not intersect at right angles . 
For areally nonhomogeneous aquifers-that is, those comprising 

subareas of homogeneous and isotropic media but of different trans-
missibility-the flow pattern cannot, according to theory, be repre­
sented by a single system of squares . If the flow net were constructed 
so that each flow path conducted the same quantity of water, one 
subarea could be represented by a system of squares, but the nets 
in the other subareas would consist of rectangles in which the ratio 
of the lengths of the sides would be proportional to the differences 
in transmissibility . If the flow lines from one subarea enter another 
subarea at an angle, the flow lines (and equipotential lines) would be 
refracted according to the tangent law. The graphical construction 
of a flow net under such conditions is extremely difficult and, with the 
data that are available for most ground-water problems, is generally 
impossible . However, Bennett and Meyer (1952, p . 54-58) have 
shown that by generalizing the flow net for such an area into a system 
of squares anddetermining the quantity of flow by making an inventory 
of pumpage in each of the subareas, the approximate transmissibility 
of the subareas may be determined . Although such an application of 
the method departs somewhat from theory, it is likely that for many 
areas it provides more realistic, areal transmissibilities than could be 
obtained by use of pumping-test methods alone. Whereas pumping 
tests may provide accurate values of transmissibilities they generally 
represent only a small "sample" of the aquifer. Flow-net analysis 
on the other hand may include large parts of the aquifer, and hence 
provide an integrated and more realistic value of the areal trans­
missibility . Moreover, by including comparatively large parts of 
the aquifer, the local irregularities that may appreciably affect some 
pumping-test analyses generally have an insignificant effect on the 
overall flow patterns . 
The application of flow-net analysis to ground-water problems has 

not received the attention it deserves ; however as the versatility of 
flow-net analysis becomes more widely known, its use will become 
more common . Such a method of analysis greatly strengthens the 
hydrologist's insight into ground-water flow systems ; it provides 
quantitative procedures for analyzing and interpreting contour maps 
of the water-table and piezometric surfaces . 
For other illustrations of flow-net construction, see figures 36 and 

38 . 

THEORY OF IMAGES AND HYDROLOGIC BOUNDARY ANALYSIS 

The development of the equilibrium and nonequilibrium formulas 
discussed in the preceding sections was predicated in part on the as­

cjn
Text Box
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sumption of infinite areal extent of the aquifer, although it is recog­
nized that few if any aquifers completely satisfy this assumption . In 
many instances the existence of boundaries serves to limit the con­
tinuity of the aquifer, in one or more directions, to distances ranging 
from a few hundred feet to as much as tens of miles. Thus when an 
aquifer is recognized as having finite dimensions, direct analysis of 
the test data by the equations previously given is often precluded . 
It is often possible, however, to circumvent the analytical difficulties 
posed by the aquifer boundary . The method of images, widely used 
in the theory of heat conduction in solids, provides a convenient tool 
for the solution of boundary problems in ground-water flow . Imagi­
nary wells or streams, usually referred to as images, can sometimes 
be used at strategic locations to duplicate hydraulically the effects on 
the flow regime caused by the known physical boundary . Use of the 
image thus is equivalent to removing a physical entity and substituting 
a hydraulic entity. The finite flow system is thereby transformed by 
substitution into one involving an aquifer of infinite areal extent, in 
which several real and imaginary wells or streams can be studied by 
means of the formulas already given . Such substitution often results 
in simplifying the problem of analysis to one of adding effects of 
imaginary and real hydraulic systems in an infinite aquifer . 
An aquifer boundary formed by an impermeable barrier, such as a 

tight fault or the impermeable wall of a buried stream valley that cuts 
off or prevents ground-water flow, is sometimes termed a "negative 
boundary." Use of this term is discouraged, however, in favor of the 
more meaningful and descriptive term "impermeable barrier." A line 
at or along which the water levels in the aquifer are controlled by a 
surface body of water such as a stream, or by an adjacent segment of 
aquifer having a comparatively large transmissibility or water-storage 
capacity, is sometimes termed a "positive boundary." Again, how­
ever, use of the term is discouraged in favor of the more precise terms 
line source or line sink, as may be appropriate. 
Although most geologic boundaries do not occur as abrupt discon­

tinuities, it is often possible to treat them as such . When conditions 
permit this practical idealization, it is convenient for the purpose of 
analysis to substitute a hypothetical image system for the boundary 
conditions of the real system . 

In this section, where the analysis of pumping-test data is con­
sidered, several examples are given of image systems required to 
duplicate, hydraulically, the boundaries of certain types of areally 
restricted aquifers . It should be apparent that similar methods can 
be used to analyze flow to streams or drains through areally limited 
aquifers . 
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PFRFNNIA7 . STREAMLINE SOURCE AT CONSTANT HEAD 

An idealized section through a discharging well in an aquifer 
hydraulically controlled by a perennial stream is shown in figure 35A. 
For thin aquifers the effects of vertical-flow components are small at 
relatively short distances from the stream, and if the stream stage is 
not lowered by the flow to the real well there is established the bound­
ary condition that there shall be no drawdown along the stream posi­
tion . Therefore, for most field situations it can be assumed for 
practical purposes that the stream is fully penetrating and equivalent 

A . REAL SYSTEM 
i 

Aquifer thickness m should be very large com­
pared to resultant drowdown near real well 

B . HYDRAULIC COUNTERPART OF REAL SYSTEM 
FIGURE 35 .-Idealized section views of a discharging well in a semi-infinite aquifer bounded by a perennial 

stream, and of the equivalent hydraulic system in an infinite aquifer . 
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to a line source at constant head. An image system that satisfies the 
foregoing boundary condition, as shown in figure 35B, allows a solution 
of the real problem through use, in this example, of the Theis non 
equilibrium formula. Note in figure 35B that an imaginary recharging 
well has been placed at the same distance as the real well from the line 
source but on the opposite side . Both wells are situated on a com­
mon line perpendicular to the line source . The imaginary recharge 
well operates simultaneously with the real well and returns water 
to the aquifer at the same rate that it is withdrawn by the real well . 
It can be seen that this image well produces a buildup of head every­
where along the position of the line source that is equal to and cancels 
the drawdown caused by the real well which satisfies the boundary 
condition of the problem. The resultant drawdown at any point on 
the cone of depression in the real region is the algebraic sum of the 
drawdown caused by the real well and the buildup produced by its 
image. The resultant profile of the cone of depression, shown in 
figure 19B, is flatter on the landward side of the well and steeper on 
the riverward side, as compared with the shape it would have if no 
boundary were present . Figure 36 is a generalized plan view of a 
flow net for the situation given in figure 35A. The distribution of 
stream lines and potential lines about the real discharging well and its 
recharging image, in an infinite aquifer, is shown. If the image 
region is omitted, the figure represents the stream lines and potential 
lines as they might be observed in the vicinity of a discharging well 
obtaining water from a river by induced infiltration . 

IMPERMEABLE BARRIER 

An idealized section through a discharging well in an aquifer 
bounded on one side by an impermeable barrier is shown in figure 
37A. It is assumed that the irregularly sloping boundary can, for 
practical purposes, be replaced by a vertical boundary, occupying
the position shown by the vertical dashed line, without sensibly 
changing the nature of the problem. The hydraulic condition imposed 
by the veritcal boundary is that there can be no ground-water flow 
across it, for the impermeable material cannot contribute water to 
the pumped well . The image system that satisfies this condition 
and permits a solution of the real problem by the Theis equation is 
shown in figure 37B. An imaginary discharging well has been placed 
at the same distance as the real well from the boundary but on the 
opposite side, and both wells are on a common line perpendicular to 
the boundary . At the boundary the drawdown produced by the 
image well is equal to the drawdown caused by the real well . Evi­
dently, therefore, the drawdown cones for the real and the image 
wells will be symmetrical and will produce a ground-water divide at 
every point along the boundary line . Because there can be no flow 
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A . REAL SYSTEM 

NOTE : 
Aquifer thickness m should be very large com­

pared to resultant drawdown near real well 

B. HYDRAULIC COUNTERPART OF REAL SYSTEM 

FIGURE 37.-Idealized section views of a discharging well in a semi-infinite aquifer bounded by an imper-
meable formation, and of the equivalent hydraulic system in an infinite aquifer . 

across a divide, the image system satisfies the boundary condition of 
the real problem and analysis is simplified to consideration of two 
discharging wells in an infinite aquifer . The resultant drawdown 
at any point on the cone of depression in the real region is the alge­
braic sum of the drawdowns produced at that point by the real well 
and its image. The resultant profile of the cone of depression, 
shown in figure 37B, is flatter on the side of the well toward the 
boundary and steeper on the opposite side away from the boundary 
than it would be if no boundary were present. Figure 38 is a general­
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FiaUR$ 38 .-Generalized flow netshowing stream lines and potential lines in the vicinity of a discharging well near an impermeable boundary . 



�

151 THEORY OF AQUIFER TESTS 

ized plan view of a flow net for the situation given in figure 37A. 
The distribution of stream lines and potential lines about the real 
discharging well and its discharging image, in an infinite aquifer, is 
shown . If the image region is omitted, the diagram represents the 
flow net as it might be observed in the vicinity of a discharging well 
located near an impermeable boundary . 

TWO IMPERMEABLE BARRIERS INTERSECTING AT RIGHT ANGLES 

The image-well system for a discharging well in an aquifer bounded 
on two sides by impermeable barriers that intersect at right angles is 
shown in figure 39 . Although the drawdown effects of the primary 
image wells, h and I2, combine in the desired manner with the effect 

ImpermeableB barrier 

A A Discharging 
real well 

J r~ rJ ~ 

Impermeable 
barrier 

NOTES-

Image wells, / , are numbered in the sequence 
in which they were considered and located 

Open circles signify discharging wells 

FIGURE 39.-Plan of image-well system for a discharging well in an aquifer bounded by two imper­
meable barriers intersecting at right angles. 
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of the real well at their respective boundaries, each image well pro­
duces an unbalanced drawdown at the extension (reflection) of the 
other boundary . These unbalanced drawdowns at the boundaries 
produce a hydraulic gradient, with consequent flow across the exten­
sion of each boundary, and therefore do not completely satisfy the 
requirement of no flow across the boundaries of the real system . It 
is necessary, therefore, to use a secondary image well, 13, which bal­
ances the residual effects of the two primary image wells at the two 
extensions of the boundaries . The image system is then hydraulically 
in complete accord with the physical boundary conditions . The 
problem thereby has been simplified to consideration of four dis­
charging wells in an infinite aquifer. 
IMPERMEABLE BARRIER AND PERENNIAL STREAM INTERSECTING AT 

RIGHT ANGLES 
The image-well system for a discharging well in an aquifer bounded 

on two sides by an impermeable barrier and a perennial stream which 
intersect at right angles is shown in figure 40. The perennial stream 
of figure 40 might also represent a canal, drain, lake, sea, or any other 
line source of recharge sufficient to maintain a constant head at this 
boundary . As before, the drawdown effects of the primary images,
h and I2, combine in the desired manner with the effects of the real 
well at their respective boundaries . However, discharging image well 
h produces a drawdown at the extension of the line source, which is 
a no-drawdown boundary, and recharging image well 1, causes flow 
across the extension of the impermeable barrier, which is a no-flow 
boundary . By placing a secondary recharging image well, Ia, at the 
appropriate distance from the extension of each boundary, the system 
is balanced so that no flow occurs across the impermeable barrier and 
no drawdown occurs at the perennial stream . Thus again the problem 
has been simplified to consideration of an infinite aquifer in which 
there operate simultaneously two dischargingandtworecharging wells. 
The simplest way to analyze any multiple-boundary problem is to 

consider each boundary separately and determine how best to meet the 
condition of no flow or no drawdown, as the case may be, at that 
boundary. After the positions of the primary image wells have been 
established, the boundary positions should be reexamined to see if 
the net drawdown effects of the primary image wells satisfy all stipu 
lated conditions of no flow or no drawdown . For each primaryimage 
causing an unbalance at a boundary position, or extension thereof, it 
is necessary to place a secondary image well at the same distance from 
the boundary but on the opposite side, both wells occupying a com­
mon line perpendicular to the boundary . When the combined draw-
down (or buildup) effects of all image wells are found to produce the 
desired effect at this boundary the same procedure is executed with 
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B Impermeable
c 

NOTES 

Image wells, / , are numbered in the sequence 
in which they were considered and located 

Open circles signify discharging wells 

Filled circles signify recharging wells 

Fiouaz 40 .-Plan of image-well system for a discharging well in an aquifer bounded by an impermeable
barrier intersected at right angles by a perennial stream . 

respect to the second boundary . Thus, the inspection and balancing 
process is repeated around the system until everything is in balance 
and all boundary conditions are satisfied, or until the effects of addi­
tional image wells are negligible compared to the total effect . 



�����

154 GROUND-WATER HYDRAULICS 

TWO IMPERMEABLE BARRIERS INTERSECTING AT AN ANGLE OF 45° 

Although it is intended here to consider the particular image-well 
system required for analyzing flow to a well in a 45-degree wedge-
shaped aquifer, it is appropriate first to comment briefly on some 
general aspects of image-well systems in wedge-shaped aquifers . By 
analogy with similar heat-flow situations it is possible to analyze the 
flow to a well in a wedge-shaped aquifer, and equivalent image systems 
can be constructed regardless of the wedge angle involved . However, 
closed image systems that are the simplest to construct and analyze 
occur when the wedge angle, 0, of the aquifer equals (or can be 
approximated as equal to) one of certain aliquot parts of 360 °. 
These particular values of 0 may be specified as follows (after Walton, 
1953, p . 17), keeping in mind that it is required to analyze flow to a 
single pumped well situated anywhere in the aquifer wedge : If the 
aquifer wedge boundaries are of like character, 0 must be an aliquot 
part of 180 °. If the boundaries are not of like character, 0 must be 
an aliquot part of 90* . 

Other simple solutions not covered by the above rule appear possi­
ble when 0 is an odd aliquot part of 360*, the pumped well is on the 
bisector of the wedge angle, and the boundaries are similar and im­
permeable . For any of the foregoing special situations it can be 
shown, with the aid of geometry, that the number of image wells, n, 
required in analyzing the flow toward the single real pumping well is 
given by the relation 

3600 
n- -1. (79)

0 

It can also be shown that the locus of all image-well locations, for 
a given aquifer-wedge problem, is a circle whose center is at the wedge 
apex and whose radius equals the distance from the apex to the real 
discharging well (see figure 45) . 
The image-well system for a discharging well in a wedge-shaped 

aquifer bounded by two impermeable barriers intersecting at an angle 
of 45* is shown in figure 41 . The real discharging well is reflected 
across each of the two boundaries which results in location of the two 
primary image wells h and 12 as shown. Considering boundary 1 
only, the effects of the real well and image well I,, are seen to combine 
so that, as desired, no flow occurs across that boundary . However, 
image well 12 will produce flow across boundary 1 unless image well 
Ia is added at the location shown . The system now satisfies the con­
dition of no flow across boundary 1 . Repeating this examination 
process for boundary 2 only, it is seen that the effects of the real well 
and image well 12 combine, as desired, to produce no flow across 
boundary 2 . However, image wells h and I8 will produce flow 
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across this boundary unless image wells I, and 15 are added as shown . 
The image system now satisfies the condition of no flow across bound­
ary 2 . Reexamining, it is seen that image wells I4 and Is will produce 
flow across boundary 1 unless image wells IB and I, are added as shown. 
A final appraisal of the effects at boundary 2, shows that the entire 
system of image wells, plus the real well, satisfies the requirement of 
no flow across the boundary . Thus the flow field caused by a dis­
charging well in this wedge-shaped aquifer can be simulated by a 
total of eight discharging wells in an infinite aquifer. The seven 
image wells have replaced the two barriers . The drawdown at any 
point between the two barriers can then be computed by adding the 

NOTES : 

Image wells, I, are numbered in the sequence 
in which they were considered and located 

Open circles signify discharging wells 

FiouRz 41-Plan of image-well system for a discharging well in an aquifer bounded by two impermeable 
barriers intersecting at an angle of 45 ° . 
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effects produced at that point by the real well and the seven image 
wells . Each image well begins discharging at the same rate and at 
the same time as the real well. 

IMPERMEABLE BARRIER, PARATMEL TO A STREAM 

Shown in figure 42 is the image-well system for a discharging well 
in an aquifer bounded by an impermeable barrier and cut by a fully 
penetrating perennial stream parallel to the barrier. A recharging 
image well, I,, and a discharging image well, I2, are placed as shown 
to satisfy respectively the conditions that no drawdown can occur 
along the line source, and no flow can occur across the impermeable 
barrier. Although these two primary image wells produce, in con­
junction with the real well, the desired effects at their respective 
boundaries, each image well produces a residual effect at the opposite 
boundary which conflicts with the stipulated boundary conditions. It 
is therefore necessary to add a secondary set of image wells, 13 and 14, 
as shown, to produce effects that will combine properly with the 
residual effects of the primary images. Each image well in the second­
ary set will again produce residual effects at the opposite boundary, 
and similarly with each successively added image pair there will be 
residual effects at the boundaries . It should be evident, however, 
that as more pairs of image wells are added the effects of adding a 
new pair have lesser influence on the cumulative effect at each bound­
ary. In other words it is only necessary to add pairs of image wells 
until the residual effects associated with addition of the next pair can 
be considered to have negligible influence on the cumulative effect at 
each boundary . It is seen in figure 42 that there is a repeating pat­
tern in the locations of the image wells. Therefore, after the posi­
tions of the first images have been determined, it is possible to locate 
by inspection as many more as are needed for the practical solution 
of the problem. Once the required number of image pairs has been 
determined, the aquifer boundaries can be ignored and the problem 
analyzed like any other multiple-well problem in an infinite aquifer. 

If the two parallel boundaries are of like character-that is, if the 
perennial stream in figure 42 were replaced by an impermeable barrier 
or if the impermeable barrier were replaced by a perennial stream-
the positions of the image wells would not be changed. In the first 
case, however, all the images would be discharging wells, and in the 
second case the image system would be an alternating series of re­
charging and discharging wells. 
TWOPARAi.LELIMPERMEABLEBARRIERS INTERSECTED AT RIGHTANGLES 

BY A THIRD IMPERMEABLE BARRIER. 
The image-well system for a discharging well in this type of areally 

restricted aquifer is shown in figure 43 . The positions of the images 
are determined as before by adding imaginary discharging wells so 
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FioITRE 42 .-Image-well system for a discharging well !n an aquifer bounded by an impermeable barrier parallel to a perennial stream . 
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that, in combination with the real discharging well, the condition of 
no ground-water flow across any of the three boundaries is established. 
As shown in the figure, two parallel lines of discharging image wells 
are required, separated by twice the distance between the real well 
and the barrier that intersects the two parallel barriers . Theoretically 
the two lines of image wells extend to infinity in both directions from 
the real well . The practical analysis of a problem of this kind, how­
ever, requires the addition of only enough images so that the effect of 
adding the next image, in any of the directions involved, has a negli­
gible influence on the cumulative effect at each of the boundaries. 
It is seen from figure 43 that there is a repeating pattern in the posi­
tions of the image wells, so that the locations of only the first few 
images are required to determine the locations of as many succeeding 
image wells as are needed . For the case of two parallel impermeable 
barriers intersected at right angles by a perennial stream, the image 
system would be the same as shown by figure 43 except that all images 
on the line reflected across the stream would be recharging wells. 
RECTANGULAR AQIIIFER BOUNDED DYTWO INTERSECTING IMPFRMEABLE 

BARR33MRS Pwg,AT"T "~rsNO PERIMNIAL STREAMS 
The image-well system for a discharging well in such an aquifer is 

shown by figure 44 . The positions of the images are determined in 
the manner previously described . It is seen from figure 44 that there 
is again a repeating pattern that extends to infinity in all directions 
from the real well . Thus only the first few images need be located to 
determine the positions of as many succeeding images as are required 
in the practical solution of the problem . If the four boundaries in 
figure 44 were all impermeable barriers, all images would be discharg­
ing wells; and if the four boundaries were all perennial streams, the 
image system would be alternating series of recharging and discharging 
wells. 
APPLICABILITY OF IMAGE THEORY INVOLVING INFINITE SYSTEMS OF 

IMAGE WFJAA 
Referring to the three problems discussed in the three preceding

sections, it will be observed that in each situation the aquifer involved 
is limited in areal extent by two or more boundaries. Furthermore, 
the arrangement of the boundaries is such that at least two are parallel 
to each other, which means that analysis by the image theory requires 
use of an image-well system extending to infinity. 

It has been stated, in discussing the practical aspects of using an 
infinite image-well system, that the individual effects of image wells 
need be added only out to the point where the effect associated with the 
addition of the next more distant well (or wells, depending on the 
symmetry of the array) can be considered to have negligible influence 
on the cumulative effect . Although this criterion ostensibly provides, 
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a reliable and practical means of terminating what would otherwise 
be an endless analytical process, closer scrutiny appears warranted. 
There is no reason to state categorically that this practical approach 
to a solution should never be tried . Undoubtedly there will occur 
situations wherein sensible results can be obtained . On the other 
hand it seems prudent to observe that if the process of algebraically 
summing the individual effects of an infinite system of image wells 
is terminated anywhere short of infinity, there is no simple way of 
determining what proportion of the infinite summation is represented 
by the partial summation. Although addition of the next image well 
(or wells) might have a negligible influence on the sum of all image-
well effects considered out to that point, there is no simple way of 
deciding whether the same may be said of the total influence repre­
sented by adding the effects of say the next 10 or 20 or 100 more dis­
tant image wells. Thus it would appear wise to keep in mind the 
possible limitations of any solution involving the use of an infinite 
system of image wells. 

COROLLARY EQUATIONS FOR APPLICATION OF IMAGE THEORY 

The nature and location of hydrologic boundaries of water-bearing 
formations in some cases can be determined from the analysis of pump-
ing-test data . Considering the discussion in the preceding sections, 
it should be evident that in an aquifer whose extent is limited by one 
or more boundaries, a plot of drawdown or recovery data will depart 
from the form that would be expected if the aquifer were of infinite 
extent . Thus, in a problem involving a discharging well in a semi-
infinite aquifer bounded by an impermeable barrier, some part of a 
time-drawdown plot may be steepened by the boundary effects. 
Conversely, if the boundary involved in thesame type of problemwere 
a perennial stream, a part of the time-drawdown plot may be flat­
tened because of the boundary effects . 
Imagine a pumping test made in ail aquifer whose extent is limited 

by one or more boundaries . During the early part of the test, the 
drawdown data for observation wells close to the pumped well will 
reflect principally thepumping effects. As the test continues, however, 
there will very likely come a time for each observation well when the 
measured drawddwws reflect the net effect of the pumped well and any 
boundaries that are present. At distant observation wells boundary 
effects may arrive almost simultaneously with the effect of the real 
discharging well . Thus determination of the aquifer coefficients of 
transmissibility and storage should be based on the early drawdown 
data, as observed in a well near the pumped well, before the boundary 
effects complicate the analysis . Superposition and matching of a 
plot of these early data (s versus r2/t) on the Theis type curve permits 
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drawing in the type-curve trace. Extension or extrapolation of this 
trace beyond the early data indicates the trend the drawdowns would 
have taken if the pumping had occurred in an infinite aquifer. The 
departure, 8 t , of the later observed data from this type-curve trace 
represents effects of the boundaries on the drawdown . The subscript i 
refers to the image-well system substituted as the hydraulic equivalent
of the boundaries. Usually it is convenient to note values of 8, at 
a number of points along the data curve and to replot these departures
versus values of r.2/t on the same graph sheet that was used in deter-
mining the coefficient of storage and transmissibility from the early
data . The subscript r refers to the real discharging well . The latter 
part of the replotted departure data may again deviate from the 
type-curve trace if the cone of depression has intercepted a second 
boundary . As before, the departures can be replotted against cor­
responding values of r, 2 lt to form a second departure curve. This 
process should be repeated until the last departure curve shows no 
deviation from the type curve. The observed data array will then 
have been separated into its component parts which can be used to 
compute the distances between the observation wells and the image
wells. 
Inasmuch as the aquifer is assumed to be homogeneous (that is, the 

coefficients of transmissibility and storage are constant throughout
the aquifer) it follows from equation 8 that 

u,1 .87Sa u, es-, (80)T r;/t r;/t 

where the subscripts r and i have the significance previously given. 
If on the plots of early drawdown data and first-departure curve a pair
of points is selected so that the drawdown component caused by the 
real well, 8� and the drawdown component caused by the image well, 
8j, are equal, it follows that u,=u{ . On the plots of observed early
drawdowns and first departures just described, 8, and s, obviously 
occur at different elapsed times, which can be labelled t, and t, 
respectively . Equation 80 can therefore be rewritten as follows : 

r2 r? 
ti.t* ) (81) 

or 

(82) 

Equation 81, known as the "law of times" in the physics of heat 
conduction, shows that at a given observation well location the times 
of occurrence of equal drawdown components vary directly and only 
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as the squares of the distances from the observation well to the 
pumped well and to its image. 

Referring to the data plots mentioned earlier in this section, note, for 
the pair of points selected, that values of s, and r,2/t, will be read from 
the early drawdown data while values of ss and r.2/t, will be read from 
the first departure curve. Equation 82 can be made more useful, 
therefore, if it is rewritten in the form 

r'It,r,=r, 2/t, (83) 

Equation 83 now affords a ready means of computing the distance 
from an observation well to an image well . Similar analysis may be 
made of each departure curve constructed from the original drawdown 
data . 

Stallman (1952) has described a convenient method for computing 
ri when the observed drawdown in the aquifer represents the algebraic 
sum of the drawdown effects from one real well and one image well . 
If equation 6 is used to provide expressions for s, and s,, and W(u) is 
substituted as a symbolic form of the exponential integral, it is seen 
that the drawdown at the observation well is 

s=s,fs,= 114
T
.6 [W(u),±W(u)s] " 

From equation 80, 

or 
ut 

rs=r, u,
. (85) 

From equations 84 and 85, it can be seen that r i and the sum of the 
W(u) terms in equation 84 can be expressed in terms of r, and the 
ratio u{/u,. Thus for any given values of u,,/u,=g, a type curve 
can be constructed by plotting assumed values of u, against cor­
responding computed values of the bracketed portion of equation 
84 [which may be written in abbreviated form as Z W(u)] . The ., 
data plot, s versus t, will match this constructed type of curve if the 
observation well is located so that the ratio r jlr, equals the given 
value of K. However, if a family of type curves is drawn for a num-
ber of given values of K, the observed data plot, s versus t, for any 
observation well, can be compared with the set of type curves . Once 
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the best matching curve is found, any convenient matchpoint is 
selected and the coordinate values, s, t, u,, Z W(u), and Kare noted. 
These values, substituted in equations 80, 84, and 85 provide the 
means for computing T, S, and r i . 

Stallman's set of curves is the familiar type-curve u versus W(u), 
used in conjunction with the Theis formula, with a series of appendage 
curves (two for each value of K) asymptotic to it . The trend of the 
appendage curve for a recharging image well is below, and for a dis 
charging image above, the Theis curve. Appendage curves could have 
been constructed by assuming values of ui instead of u, . In this 
event, however, the matching process would not be as direct inasmuch 
as the parent type curve, instead of occupying a single position, 
would shift along the u axis with each pair of appendage (K) curves . 
The appendage curves, computed by Stallman, are for ideal image

wells-those which are pumped or recharged at the same rate as the 
real well . The hydrogeologic structure which gives rise to the 
hypothetical image is not always ideal ; therefore the hypothetical 
images are not always ideal . For this case the method of plotting 
departures may yield an erroneous and misleading analysis . On the 
other hand, the deviations from ideality can be seen immediately 
if the observed data plot s versus t is matched to Stallman's set of 
type curves . Furthermore, for nonideal images, the most accurate 
selection of K is made by utilizing the portion of the appendage 
curve that is nearest the parent or Theis type curve. 

If little is known of the possible location of a local hydraulic bound­
ary a minimum of three observation wells is required to fix the position 
of an image well, which in turn permits location of the boundary . 
After the distances from the individual observation wells to the image 
well have been computed, arcs are scribed with their centers at the 
observation wells and their radii equal to the respective computed
distances to the image well . The intersection of the arcs at a common 
point fixes the location of the image well, and the strike of the bound­
ary is represented by the perpendicular bisector of a line connecting 
the pumped well and the image well . 
Another graphical method for locating a hydraulic boundary in 

the vicinity of a discharging well was devised by E . A. Moulder 
(1951, written communication, p. 61) . The geometry is shown in 
figure 45 . A circle is scribed whose center is at a nearby observation 
well, O, and whose radius, r {, is equal to the computed distance from 
the observation well to the image well . The image well lies somewhere 
on this circle, say, at point I. Lines are drawn from the selected 
point I to the observation well and to the real discharging well, P. 
If point I is the image-well location and if A is the midpoint of the 
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line IP, then point A lies on the boundary . It can be proved by 
geometry, that the locus of all points A determined in this manner is a 
circle, of radius BA or rj/2, with its center, B, located midway between 
the discharing well and the observation well . Moulder's method 
is particularly useful in aquifer-test situations where data from 
only one or two observation wells are available for locating a boundary 
position . If the approximate position of a suspected boundary is 
known before a pumping test begins, it is desirable to locate most 
of the observation wells along a line parallel with the boundary and 
passing through the pumped well . If feasible the range of distances 
from the observation wells to the pumped well should be distributed 
logarithmically to assure well-defined are intersections in the graphics 
of locating a point on that boundary . At least one observation well 

-%e 
c~ 

Locus of all possible locations 
of a point on the hydrologic 
boundary 

Fiovx$ 45 .-Geometry for locating a point on a hydrologic boundary, with reference to the locations of a 
discharging well and a nearby observation well . 
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should be located close enough to the pumped well so that the early 
drawdown data, unaffected by the boundary, can be used in comput­
ing the aquifer coefficients of storage and transmissibility. 

APPLICABILITY OF ANALYTICAL EQUATIONS 
The assumptions used in developing the equations presented in this 

report include the stipulation that the aquifer is homogeneous and 
isotropic. Even though most naturally deposited sediments do not 
satisfy this condition, the equations may still be applied and the 
results qualified according to the extent of nonhomogeneity . It 
should be realized that homogeneity is a relative term with respect to 
time and space. As an illustration, consider an aquifer composed of 
two types of material-a fine sand and a very coarse sand. Assume 
that these materials occur individually in deposits having the shape 
of cubes one-eighth of a mile on a side, andthat alternate rows of cubes 
(squares in plan view) are offset a distance equal to one-half the length 
of one side of the cube (that is, one-sixteenth of a mile). Let the fine 
and coarse sand occur in alternate cubes along the continuous rows, 
and assume that water occurs, in the aquifer thus created, underwater-
table conditions . Strictly speaking, this aquifer, of infinite extent, 
would now be described as nonhomogeneous . However, the areal 
extent of the portion of the aquifer sampled in a test would be signifi-
cant in judging this element of the aquifer's description. Forexample, 
if a discharging well test is conducted in the center of one of the squares 
and if the test is terminated before the area of influence reaches the 
perimeter of the square, the test results probably would be considered 
excellent and the aquifer described as homogeneous . The results 
would in no way differ from the results to be expected if a similar test 
were made on an infinite "homogeneous" aquifer, composed of material 
identical to that occurring in the limited area here tested . 

As another example, again consider an aquifer test using a discharg­
ing well in the center of one of the squares of the hypothetical aquifer. 
The nearest of several observation wells is at a radius of 5 miles from 
the pumped well, and the test is run until the area of influence is 
described by a circle 10 miles in radius . Coefficients of transmissibility 
computed from data collected at all the observation wells should be in 
close agreement (although not equal to the values obtained from the 
previously described test), and again the hypothetical aquifer, even 
on the larger scale represented in this sample, would be adjudged 
homogeneous. This judgment relies upon the reasoning that, for the 
distances involved, the slightly meandering path of water, as it moves 
toward the well, may be described statistically as conforming to the 
concept of radial flow. For any case in which nonhomogeneity is so 

cjn
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The Unusual and Large Drawdown Response
of Buried-Valley Aquifers to Pumping
by Garth van der Kamp1 and Harm Maathuis2

Abstract
The buried-valley aquifers that are common in the glacial deposits of the northern hemisphere are a typical

case of the strip aquifers that occur in many parts of the world. Pumping from a narrow strip aquifer leads to much
greater drawdown and much more distant drawdown effects then would occur in a sheet aquifer with a similar
transmissivity and storage coefficient. Widely used theories for radial flow to wells, such as the Theis equation,
are not appropriate for narrow strip aquifers. Previously published theory for flow to wells in semiconfined strip
aquifers is reviewed and a practical format of the type curves for pumping-test analysis is described. The drawdown
response of strip aquifers to pumping tests is distinctive, especially for observation wells near the pumped well.
A case study is presented, based on extensive pumping test experience for the Estevan Valley Aquifer in southern
Saskatchewan, Canada. Evaluation of groundwater resources in such buried-valley aquifers needs to take into
account the unusually large drawdowns in response to pumping.

Introduction
Long and narrow strip aquifers in the form of buried-

valley deposits confined by low-permeability aquitards
are common in the glaciated terrain of northern North
America and north-western Europe (Andersen and Haman
1970; Kehew and Boettger 1986; Shaver and Pusc 1992;
Parks and Bentley 1996; Maathuis and Thorleifson 2000;
Desbarats et al. 2001; Sandersen and Jorgensen 2003;
Russell et al. 2004; BurVal Working Group 2006; Seifert
et al. 2008; Ahmad et al. 2009). These aquifers occur as
long and narrow, highly transmissive, sand and gravel
units that are incised into much less permeable clay-
rich formations or into the less permeable bedrock.
The aquifers may be highly productive sources of
groundwater, but their distinctive hydraulics can also
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garth.vanderkamp@ec.gc.ca

2Cameco Corporation, 1131 Avenue W South, Saskatoon,
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doi: 10.1111/j.1745-6584.2011.00833.x

lead to unexpectedly large drawdown of the groundwater
levels over large distances. Hence it is important to have
appropriate conceptual and theoretical models that provide
understanding of how such strip aquifers function, and that
can be used in analyzing pumping test data and predicting
the impacts of pumping.

Most theoretical models for groundwater flow to a
well are based on the assumption that the aquifers occur
as sheets, extensive in every direction, and that the flow
is radially symmetric (Kruseman and de Ridder 1990).
The models can be extended to simple types of aquifer
boundaries by means of the image well method. However,
the radial flow models are not useful for long narrow
aquifers, such as occur within valley deposits, in which
the flow is strongly influenced by boundaries on either
side and where the flow is not radially symmetric except
very near the pumping well.

The purpose of this paper is to describe the large
drawdowns caused by pumping that are encountered
for narrow buried-valley aquifers and to present a
simple conceptual and quantitative model for anticipating,
predicting and analyzing such drawdown behavior, based
on previously published theoretical analyses. Practical
strip-aquifer type curves are described, an example of a
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Figure 1. Data and type curve analysis for an 8-day pumping test of the Estevan Valley Aquifer (adapted from Walton 1965).

field application is given, and attention is drawn to the
distinctive drawdown behavior of observation wells near
the pumped well in strip aquifers.

Type-Curves for a Strip Aquifer
The shortcomings of using radial flow models to

analyze drawdown data for strip aquifers is illustrated in
Figure 1, which is a reproduction of the data and analysis
for an 8-day pumping test carried out for a buried-valley
aquifer near Estevan in Southern Saskatchewan, Canada
(Walton 1965, 1970). An analysis with two image wells
to take boundaries into account could use only the first
20 min of the data, and analysis of the full 11,500 min of
data would have required many more image wells. Thus
the desirability of a more general mathematical approach
is indicated. The response to pumping of this aquifer will
be further described in this paper.

Vandenberg (1976, 1977) developed type curves for
the drawdown caused by pumping in semiconfined strip
aquifers. Motz (1991) and Zhang (1992) carried out
theoretical analyses of one-dimensional transient flow in a
leaky aquifer in response to water level changes in rivers
or canals. These analyses are mathematically equivalent
to Vandenberg’s results (Gill 1992). Related results were
presented by Butler and Liu (1991) for the special case
of a confined linear aquifer embedded in a matrix with
different permeability.

Except for the assumption of one-dimensional flow
rather than radial flow, the analyses by Vandenberg
(1977), Motz (1991), and Zhang (1992) are based on
assumptions about the aquifer-aquitard system and its
properties that are identical to the assumptions for the

well-known theory of radial flow in a semiconfined aquifer
as first developed by Hantush and Jacob (1955). These
assumptions include:

1. The aquifer is uniform and infinitely long in both
directions from the pumped well and the underlying
and adjoining formations are impermeable.

2. The overlying aquitard has a zero elastic storage
coefficient, so that all the storage is in the aquifer itself.
Drawdown at the top of the aquitard is assumed to be
zero, implying that the storage (or specific yield) at the
top of the aquitard is very large.

Details of the mathematical derivations are not pre-
sented here since they are available in the aforementioned
papers by Vandenberg, Motz, Zhang, and Gill.

The original equations derived by Vandenberg (1977)
are:

s =
(

Qx

2T W ′

)
F

(
u,

x

L

)
(1)

where:

u =
(

x2S

4T t

)
and F

(
u,

x

L

)

=
(

1/2π
1
2

) ∫ ∞

u

y
−3
2 exp

(
−y − x2

4L2y

)
dy (2)

in which s = drawdown, Q = pumping rate (constant),
x = distance between the pumped well and the observa-
tion well measured along the aquifer, T = transmissivity,
W ′ = strip aquifer width, L= leakage length = (Tb ′/K ′

v)
1
2 ,
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Figure 2. Type curves for semiconfined strip aquifers (adapted from Zhang 1992).

S = storage coefficient, t = time since pumping started,
b′ = thickness of the confining aquitard and K ′

v = vertical
hydraulic conductivity of the aquitard. The leakage length
L is the same as the leakage length for sheet aquifers,
commonly denoted as L (Kruseman and de Ridder 1990)
or as B (Hantush and Jacob 1955). Values for F(u, x/L)

have been provided by Vandenberg (1977) and Kruseman
and de Ridder (1990).

These equations are based on the assumption that the
flow in the aquifer is one-dimensional, in other words
the pumped well is represented mathematically as a
face of constant discharge across the full width and depth
of the aquifer. In practice the flow converges radially to
the pumping well which is essentially a vertical line sink.
Vandenberg (1977) showed that for observation wells
further than one aquifer width distant from the pumping
well the one-dimensional flow equations provide a good
approximation of the drawdown. At smaller distances
from the pumping well there is additional drawdown
caused by the radial flow component. In this paper a
slightly modified version of the type curves presented
by Zhang (1992) is used, conforming to the commonly
used “log-log” format for presenting drawdown data
(Figure 1). Other mathematically equivalent forms of the
type curves were described by Vandenberg (1977) and
Motz (1991). The type curves (Figure 2) represent plots of

dimensionless drawdown V as a function of dimensionless
time t ′ and dimensionless distance x/L, which can be
written in the form:

V (t ′, x/L) =
(

2TA

QL

)
s(x, t) (3)

t ′ =
(

tTA

SAL2

)
= t/(Sb′/K ′

v) (4)

V and t ′ are related to Vandenberg’s F(u, x/L) and u

by V = (x/L)F and t ′ = (x2/L2)(1/4u). Values of V and
t ′ have been tabulated and are available from the authors
on request.

The type curve parameters are expressed in terms
of TA, the cross sectional conductance or transmissive
capacity of the aquifer; SA, the cross-sectional storativity
of the aquifer; and L, the leakage factor, defined by:

TA = T W ′ (5)

SA = SW ′ (6)

L =
(

TAb′

W ′K ′
v

) 1
2

(7)

where T and S are the average values of transmissivity
and storage coefficient of the aquifer, averaged over,
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W ′, the width of the top of the aquifer (see Figure 2), b′
is the thickness of the overlying aquitard, and K ′

V is the
vertical hydraulic conductivity of the aquitard. The width
of the top of the aquifer, W ′, is used because it reflects the
inflow from the overlying aquitard. These modified type
curves are identical to the type curves presented by Zhang
(1992, Figure 8, type A curves) with the proviso that here
the cross-sectional conductance TA and storativity SA are
used rather than T and S.

As suggested by Vandenberg (1977) use of the
cross-sectional parameters TA and SA is appropriate for
a narrow strip aquifer because the primary interest is
usually with the total water transmitting and water storing
capacity of the aquifer. For instance, the total rate of flow
of water along the aquifer is simply the product of TA and
the hydraulic gradient along the aquifer. The use of these
cross-sectional parameters avoids the need to determine
the distributions of permeability and storage coefficient
in the usually highly heterogeneous aquifers. However,
the type curves can also be analyzed in terms of the
parameters TW ′, S/T , and L, as indicated by Equations 1
and 2. Calculation of representative values of S and T

for the entire cross-section of the aquifer then requires an
independent determination of the aquifer width.

The analytical solution shows that the behavior of
an ideal leaky strip aquifer is governed by the three
aquifer parameters TA, SA, and L. These parameters can
be determined by fitting measured drawdowns, plotted as
a function of time, to the type curves. The procedure is
the similar to the type curve fitting procedure used in the
analysis of pumping test results for radial flow in sheet
aquifers (Kruseman and de Ridder 1990). Ideally data
from more than one observation well should be plotted
together and then matched simultaneously to the type

curves, with values of x/L for each of the wells being
proportional to the distance x for the various observation
wells. The value of L is calculated from the type curve
values of x/L for the observation wells at known distances
x from the pumping well. TA and SA are then determined
from the match point values of V , t ′, s, and t by means
of Equations 3 and 4 which can be written:

TA =
(

QLVmp

2smp

)
(8)

SA =
(

tmpTA

t ′mpL
2

)
(9)

Vmp, smp, tmp, and t ′mp are the values of V , s, t , and
t ′ corresponding to the match point. An example is given
in the following section of this paper.

Case Study: Analysis of Pumping-Test Data
for Estevan Valley Aquifer

The Estevan Valley Aquifer in southern Saskatchewan
(Figure 3) is an extensive buried-valley aquifer system
that has been evaluated for its groundwater resource
potential in the process of several successive studies.
The main features of the aquifer have been described
in reports and papers (Meneley et al. 1957; Walton
1970, pp. 73–81; Beckie Hydrogeologists Ltd. 1984; van
der Kamp 1985; Maathuis and van der Kamp 2003).
The aquifer consists of sand and gravel within several
intersecting buried channels, confined by 50 to 100 m
of clay-rich till. The main buried-channel aquifer units
are 1000 to 4000 m wide. The aquifer is up to 80 m
thick and at most locations in the channels consists of
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Figure 3. Plan view of the Estevan Valley Aquifer in southern Saskatchewan.
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a lower and upper sand and gravel zone, separated by a
clay and silt layer. The channels have been traced by
means of geologic and geophysical logs for farm and oil
wells and extensive test drilling over distances of up to
60 km. However, the static water levels and the pumping
test data indicate that there are several transverse barriers
across the aquifer channels that partially or completely
eliminate hydraulic connection between different aquifer
segments (Figure 3), similar to the barriers that have been
described by Shaver and Pusc (1992) for buried-valley
aquifers in North Dakota, USA. The well identifications
shown in Figure 3 include “U,” “L,” or “UL” to indicate
whether they are screened in the upper, lower, or both
zones of the aquifer. The top of the buried valley aquifer
lies well below the bottom of the Souris River valley and
no effects of interaction with the overlying river could be
detected in the hydraulic head data for the aquifer.

An 8-day pumping test, with a pumping rate of
0.035 m3/s was carried out in 1965 (Walton 1965)
at PW1L-65 (Figure 3), with three observation wells at
distances of 26, 76, and 222 m (84, 250, and 729 feet)
that were decommissioned after the test. All wells were
screened in the lower zone of the aquifer. Only the first
20 min of the drawdown data were used for analysis
on the basis of the Theis confined-aquifer type curves,
which gave T = 0.032 m2/s (188,000 Igpd/ft) near the
well and S = 2.2 × 10−4 (Figure 1). After the first 10 min

of pumping the observed drawdown increasingly exceeded
the drawdown that would be expected for radial flow in
a sheet aquifer, reflecting the influence of the channel
boundaries. At the end of the test a drawdown of
0.20 m (0.59 feet) was measured for well GSC3A-L,
13,400 m east of the pumping well site (Figure 3),
indicating that the drawdown effects could be far-reaching
if pumping were continued for a longer time.

In 1984, a 29-day pumping test was conducted on
pumping well PW2UL-84 screened in the upper and
lower permeable zones of the Estevan Valley aquifer, at
a point about 8600 m distant from the site of the 1965
test (Figure 3). The pumping rate was 0.0757 m3/s (van
der Kamp 1985). Drawdown was measured in numerous
observation wells at distances between 30.5 and 13,000 m
from the pumping well, including well PW1L-65 that was
pumped in 1965. The recovery after pumping was very
slow and the residual drawdowns were measured for ten
months after pumping ceased (Figure 4). The measured
drawdowns in the observation wells follow a regular
pattern of smaller drawdown with increasing distance,
except for the drawdown in well PW1L-65 where the
drawdown was much smaller. This smaller drawdown
indicates the existence of a partial hydraulic barrier
between the pumped well and PW1L-65, a hypothesis that
was corroborated by a discontinuity in the static hydraulic
gradient between the wells prior to pumping.
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Figure 4. Drawdown data for the pumping and recovery phases of the 1984-85 pumping test on well PW2UL-84.
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The residual drawdowns were used to calculate
the drawdowns that would have occurred had pumping
continued, using the extrapolation method of van der
Kamp (1989), thus extending he effective length of the
test to almost 1 year. The extrapolation method is very
general in its applicability, but it does accumulate the
uncertainty in the residual drawdown during recovery
because of uncertainty of the background “static water
level,” so that the possible error in the extrapolated
drawdowns toward the end of the 11-month period is
about ±0.5 m. The late-time drawdown data for selected
observation wells, including the extrapolated drawdown
based on the recovery data, are plotted in Figure 5 as a
log-log plot to facilitate matching to the type curves. As
for the 1965 test on well PW1L-65 (Figure 1), the log-
log plots of the drawdown curves for observation wells
near the pumped well exhibited a “straight-line” behavior.
The late-time drawdowns are likely to be influenced by
transverse hydraulic barriers across the aquifer channels,
the existence of which can be inferred from discontinuities
in the hydraulic gradient along the various portions of the
channels (Figure 3). Such barriers would be expected to
lead to greater late-time drawdown then would be the case

if the channels were continuous to very large distances
(i.e., distances much greater than L).

To obtain aquifer parameters and an estimate of long-
term yield for the aquifer, a type-curve match was made
using the drawdown data for the far away well 18UL
(x = 13,000 m, greater than W ′ = 4000 m) because it is
the only distant observation well screened in both the top
and bottom zones of the aquifer, corresponding to the
pumped well. The drawdown curve for 18UL most closely
matched the type curve for x/L = 0.1 (Figure 5). The
match point is shown, with values of Vmp = 0.1, smp =
3.1 m, tmp = 2.7 × 106 min and t ′mp = 1.0, resulting in
values for the aquifer system properties of: L = 130 km,
TA = 160 m3/s, and SA = 1.5 m.

If the effective width of the aquifer, W ′, is taken to
be 4000 m, these values give transmissivity and storage
coefficient for the aquifer of 0.04 m2/s and 3.8 × 10−4.
Assuming an effective thickness of the aquitard of 75 m
the vertical hydraulic conductivity of the aquitard K ′

v is
then 1.8 × 10−10 m/s. The T and S values are comparable
to the results of the 1965 pumping test which assessed
only the lower zone of the aquifer. The K ′

v value of the
glacial till aquitard corresponds to similar values obtained
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at other sites in Saskatchewan (Keller et al. 1989; Shaw
and Hendry 1998).

With x/L = 0.1 for well 18UL-84 at x = 13,000 m,
the drawdown data for well 6L-82, at x = 7300 m would
ideally match the type curve for x/L = 0.05. However,
the drawdown data for well 6L-82 lie slightly above the
x/L = 0.05 type curve. Considering the complexity of
the aquifer geometry and taking into account that 6L
is screened only in the upper aquifer zone, this lack
of precise correspondence with the drawdown data for
18UL is not surprising. The drawdown curves show
no obvious sign of a “leveling off” (indicating an
approach to equilibrium) even for t = 4.6 × 105 min, or
almost 11 months (Figure 5), but the matched type curves
suggest that full equilibrium would be approached after
about 1 × 107 min, or about 20 years.

Within a few thousand meters of the pumped well
the observed drawdowns (Figure 5) are influenced by
radially convergent flow to the pumping well, causing
the drawdown data at late time for well 12UL, 30.5 m
from the pumped well, to lie above the type curve for
x/L = 0.01 by about 6 m. The drawdown in the pumped
well (diameter 0.254 m) was increased by about 11 m
through a combination of radial flow and well losses.

Discussion
For late-time conditions (t ′ > 3, Figure 2), when

steady-state conditions have been reached, the drawdown,
s0, in the aquifer at distances greater than one aquifer
width from the pumping well is given by (Vandenberg
1977):

s0 =
(

QL

2TA

)
e(−x/L) (10)

Equation 10 shows that the steady-state drawdowns
decrease exponentially with distance away from the well,
so that at x = L, 2L, and 3L the drawdowns are 0.37,
0.13, and 0.05 of the drawdown near the well (neglecting
radial flow). The parameter L thus gives a useful measure
of the extent of the drawdown “cone” when steady-
state conditions are approached. For deep buried-valley
aquifers, L values can be as large as 10 to 100 km or
more and well interference can be significant even for
production wells (or well fields) spaced tens of kilometers
apart.

The peculiar properties of semiconfined strip aquifers
as compared to semiconfined sheet aquifers are illustrated
with the theoretical drawdown results given in Table 1
which summarizes the steady state drawdowns as a
function of distance from the pumping well for a 1000 m
wide strip aquifer and for a sheet aquifer with the same
values of T and L. The steady-state drawdown in a
semiconfined sheet aquifer is given by (Kruseman and
de Ridder 1990):

s = Q

2πT
K0

( r

L

)
(11)

Table 1
Theoretical Values of Steady-State Drawdown in a

Semiconfined Strip Aquifer and a Semiconfined
Sheet Aquifer with the Same Hydraulic Properties
(T = 0.03 m2/s, L = 35,000 m) and for the Same

Pumping Rate (0.040 m3/s)

Drawdown (m)

Distance x or r (m) Strip aquifer Sheet aquifer

0.127 >23.3 2.68
30 >23.3 1.52

500 >23.01 0.93
1000 22.7 0.78
7000 19.1 0.37

35,000 8.58 0.09
70,000 3.16 0.02

Note: The width of the strip aquifer is assumed to be 1000 m and the diameter
of the pumping well is 0.254 m.

where r is the radial distance form the pumping well and
K0 is the modified second kind Bessel function of order
zero.

These calculations show that the drawdowns caused
by pumping from a strip aquifer can be at least an order of
magnitude greater than for a sheet aquifer with the same
hydraulic properties, especially at distances far from the
pumped well. Clearly expectations about the hydraulic
response to pumping for strip aquifers can be highly
erroneous if they are based on experience with sheet
aquifers.

The much larger drawdowns and much larger extent
of the drawdown “cone” for strip aquifers have important
implications for the design of pumping tests. Observation
well distances of a few hundred meters, such as are
typically used for sheet aquifers, can provide reasonable
results for transmissivity and storage coefficient near the
pumped well, but will not give useful results for
the response of the strip aquifer at large distances from the
pumped well. The response of the Estevan Valley Aquifer
is a case in point. During the 1965 pumping test (Figure 1)
with duration of 8 days, the focus was on the nearby
observation wells up to 222 m distant, which provided
useful data for only the first 20 min of the test. The
1984 to 1985 test (Figure 4) showed that after 8 days
of pumping significant drawdowns extended out to at
least 13,000 m. Observation well spacing for narrow strip
aquifers should be much larger than the aquifer width and
much greater than for sheet aquifers with similar hydraulic
properties.

The transmissivity in the vicinity of the pumping well
is an important parameter for well field design because
it has a major bearing on the drawdown of the water
level in the well. This transmissivity can be determined
from the early-time drawdown data for nearby observation
wells (x � W ′) as was done for the 1965 test (Figure 1)
or by means of a distance-drawdown analysis for radial
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flow if data from more than one nearby observation
well are available. For wide buried-valley aquifers, with
width approaching or exceeding the leakage length L,
the drawdown caused by pumping may be dominated by
radial flow. For such cases sheet-aquifer type curves may
be applicable, making use of image well methods.

When hydrogeologic data are sparse, it may not
always be obvious that a particular aquifer will behave like
a strip aquifer. “Straight-line” segments of the drawdown
curves on log-log plots may be an indication that one
is dealing with a strip aquifer or with an aquifer that
has strip-like properties. The theoretical slope of the
straight-line segment on a log-log plot would be 1/2 for
observation wells near the pumped well in ideal strip
aquifers, but radial flow drawdown will result in higher
drawdown then predicted by the strip-aquifer type curves
and straight-line behavior with a slope less than 1/2.
Slopes somewhat less than 1/2 are commonly reported,
in part because most reported pumping tests for buried-
valley aquifers only had observation wells located near
the pumped well, as is routine for sheet aquifers. For
example, Andersen and Haman (1970, Figure 6); Shaver
and Pusc (1992, Figure 6) and Parks and Bentley (1996,
Figures 6 and 9) each presented pumping test results that
have typical “straight-line” strip aquifer behavior. The
drawdown data for the Estevan Valley Aquifer (Figures 1
and 5) also illustrate such behavior.

Transverse low-permeability barriers are commonly
encountered within buried-valley aquifers associated with
glacial deposits (Shaver and Pusc 1992), but their origin is
not well understood (Russell et al. 2004). Barriers of this
type may not be identifiable on the basis of sparse geologic
data, but a characteristic indication of their presence is
the occurrence of “steps” in the hydraulic head profile
along the aquifer. With respect to the drawdown caused
by pumping, the possible presence of barriers means the
aquifer should not be assumed to be of infinite extent. This
restriction is particularly telling for buried strip aquifers
in view of the large extent of the drawdown “cone.” The
presence of barriers, even at large distances from the
pumped well may lead to additional drawdown at the well.
Evaluations of flow in buried-valley aquifers typically
need to take account of hydrogeological complications
such as partially permeable transverse barriers within the
aquifer, significant flow exchange with adjacent aquifers
and complex buried-valley geometry. The type curves for
an ideal leaky strip aquifer appear to be remarkably robust
for simulating observations, judging by the example of the
nonideal Estevan Aquifer. Nevertheless, their applicability
is limited and more detailed numerical methods should be
used as appropriate.

Conclusions
The type curves for semiconfined strip aquifers can

be usefully employed in the understanding, prediction
and analysis of drawdown caused by pumping from
such aquifers. For narrow strip aquifers evaluations of
groundwater resource availability based on the assumption

of radial flow to the pumping well in a sheet aquifer can
lead to underestimation of drawdowns and overestimation
of the sustainable yields by as much as an order of
magnitude.

The type curves for a strip aquifer are not applicable
near the pumped well, but provide a useful theoretical
model for drawdown far away from the pumping well
caused by long-term pumping. Design of pumping tests
for buried-valley aquifers should include placement of
observation wells at distances from the pumped well
greater than the width of the aquifers, and typically much
further away then would be indicated by normal practice
for sheet aquifers.

Log-log plots of drawdowns measured near the
pumped well have a characteristic “straight-line” pattern
which can serve as an indicator that a particular aquifer
is behaving as a strip aquifer.

Many real-world strip aquifers, such as the buried-
valley aquifers that are common in glacial deposits, have
complex structures that challenge delineation by means
such as test drilling or geophysical methods. Hence a
pragmatic approach to dealing with groundwater flow
in such aquifers is indicated, dealing with the aquifers
as complex systems whose responses to pumping can
only be determined and predicted by actual testing of the
entire system. For important and complex cases numerical
methods may be appropriate. However the strip-aquifer
type curves allow useful estimates of how buried-valley
aquifers respond to pumping.
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Abstract Adequate groundwater management requires
models capable of representing the heterogeneous nature
of aquifers. A key point is the theoretical knowledge of
flow behaviour in various heterogeneous archetypal con-
ditions, using analytically or numerically based models.
This study numerically investigates transient pressure
transfers between linearly contiguous homogeneous do-
mains with non-equal hydraulic properties, optionally
separated by a conductive fault. Responses to pumping
are analysed in terms of time-variant flow dimension, n.
Two radial stages are predicted (n: 2 – 2) with a posi-
tive or negative vertical offset depending of the trans-
missivity ratio between domains. A transitional n = 4
segment occurs when the non-pumped domain is more
transmissive (n: 2 – 4 – 2), and a fractional flow seg-
ment occurs when the interface is a fault (n: 2 – 4 – 1.5
– 2). The hydrodynamics are generally governed by the
transmissivity ratio; the storativity ratio impact is
limited. The drawdown log-derivative late stabilization,
recorded at any well, does not tend to reflect the local
transmissivity but rather the higher transmissivity
region, possibly distant and blind, as it predominantly
supplies groundwater to the well. This study provides
insights on the behaviour of non-uniform aquifers and
on theoretical responses that can aid practitioners to
detect such conditions in nature.

Keywords Pumping tests . Heterogeneity . Hydraulic
properties . Derivative analysis . Flow dimension

Introduction

Natural aquifers are essentially heterogeneous systems.
Identifying hydraulic heterogeneities and anticipating their
impact on groundwater flow is a fundamental and most im-
portant task given to hydrogeology researchers and practi-
tioners. To this end, pumping tests constitute an adequate ap-
proach only if interpretative models are able to account for the
heterogeneity of flow. Eighty years ago, the ground-breaking
Theis (1935) model, later referred to as the infinite acting
radial flow model, provided an analytical solution to the hy-
perbolic transient diffusivity problem by assuming a perfectly
homogeneous flow configuration. By its very nature, this
highest degree of idealization of aquifers is unable to render
any heterogeneity of flow occurring in real aquifers. Critics of
the model have cited its lack of realism, which leads to overly
gross and approximate aquifer interpretations (Renard 2005;
Renard et al. 2008; Pechstein et al. 2016). For practical and
contextual reasons, this model has been the one most often
used in hydrogeology applications without much assessment
of the degree to which it diverges from reality. In contrast,
decades of active research in the petroleum and hydrogeology
fields have yielded several advances for modelling heteroge-
neous flow. The derivative analysis (Tiab and Kumar 1980;
Bourdet et al. 1983, 1989; Spane 1993; Spane and Wurstner
1993; Beauheim et al. 2004; Samani et al. 2006; Dewandel
et al. 2011; Avci et al. 2013; Xiao and Xu 2014; Sun et al.
2015) is frequently referred to as one of the most significant
breakthroughs in pumping test analysis (e.g., Issaka and
Ambastha 1999; Renard et al. 2008; Hammond and Field
2014). The central idea consists in deciphering the reservoir
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response to pumping tests by identifying the various types of
flow regimes that are recorded, based on the shape of the
drawdown log-derivative time series. Real data are compared
to a reference panel of theoretical behaviors that have been
established as corresponding to various conceptual flow
models (Verweij 1995). These conceptual flow models are
idealized models of aquifers which provide hydrogeologists
with a range of archetypal frameworks used to interpret and
describe real-world conditions that are more complex than
basic idealized models. A first generation of these models is
(semi-)analytical solutions of the diffusivity equation, assum-
ing specific hydraulic and geometrical aquifer conditions. For
mathematical suitability, strong postulates must commonly be
made on the geometry of transient flow to reduce the diffusiv-
ity problem—a second-order partial differential equation, to a
solvable form. Purely numerical approaches used in an exper-
imental mode provide a second generation of conceptual
models, predicting drawdown responses in two-dimensional
(2D) or three-dimensional (3D), analytically unsolvable, het-
erogeneous flow configurations (e.g., Bourdet 2002). In such
an approach, serial flow simulations into synthetic domains
are processed to assess the sensitivity of the drawdown re-
sponses to every hydraulic and geometrical input parameter,
into a given conceptual configuration (e.g., Rafini and
Larocque 2009, 2012). A second breakthrough in pumping
test analysis was the flow dimension theory (Barker 1988).
It offered significant new perspectives in modelling hydraulic
behavior by generalizing the conception of flow regimes to
drawdown log-rates either increasing with time (flow dimen-
sion less than two) or decreasing with time (flow dimension
greater than two), while previously published models
accounted for drawdown log-rates constant or varying with
time following specific coefficients 0.25, ±0.5 or ±1. A con-
stant drawdown log-rate such as described by Theis (1935),
corresponds to the radial flow regime; such a regime is char-
acterized by a flow dimension equal to two. Henceforth, to
justify appropriate use of the Theis or Cooper-Jacob (1946)
models, prior identification of such flow dimension conditions
would theoretically be required; however, this is rarely if ever
done in practice. Both the derivative and the flow dimension
approaches have this in common, that they recognize the ex-
istence in nature of various types of flow regimes. Based on
this recognition, and using recently developed approaches, it
is now possible to select appropriate conceptual flow models
by identifying the time-sequences of flow regimes observed
during a pumping test. These concepts are the foundation for
the interpretative framework proposed in this study.

The manner with which natural heterogeneities are hydrau-
lically represented in commonly used conceptual models
greatly depends on their size in relation to that of the investi-
gated domain. In natural aquifers, heterogeneities governing
hydraulic properties occur at various scales, from the very
small (cm) grain or crystal arrangements, to commonly found

networks with characteristic metric fracture lengths, to large-
scale (km) features such as lithological spatial variations or
regional structures where groundwater transfers occur primar-
ily through faults, or to cross-connected aquifers (Chesnaux
et al. 2012). It is of particular interest that in pumping-test
conditions, the relative influence of micro-, meso-, and
macro-scale heterogeneities on the drawdown response is
time-variant as the scale of the investigation grows over time.
Smaller-scale heterogeneities may typically be considered as
fields, and may be adequately described using statistical func-
tions; however when the investigation scale grows larger than
the typical size of a single heterogeneity, usually after a very
short pumping time, these fields tend to behave like homoge-
nous media, with properties averaging the distribution func-
tion (e.g., Meier et al. 1998). Induced flow regimes will be
radial, except when the distribution is scale-invariant (Cello
et al. 2009). Such fields are typically well represented using
stochastic hydraulic models. Conversely, larger heterogene-
ities that occur on a scale ranging from decameters to several
kilometers must, in most pumping test cases, be represented as
independent hydraulic domains influencing the macro-scale
behavior during restricted time periods, i.e., when the investi-
gation scale is of a magnitude which is comparable to the scale
of the heterogeneity. These larger heterogeneities can often be
modelled deterministically because only a small number of
them may exert a significant impact on the flow field at any
given time. Thus, the objective in this study is not to simulate
stochastic heterogeneity fields but to deterministically inves-
tigate the hydrodynamic impact of specific types of large-scale
heterogeneities, producing complex non-radial flow geome-
tries. The evolving influence of such heterogeneities on the
flow regime over time tends to generate convoluted responses
to pumping tests, with time-variant flow regimes and incon-
stant drawdown log-rates.

Large-scale heterogeneous flow may result from the co-
existence of several flow domains in the aquifer, each with
different hydraulic properties. Indeed, in many real-life situa-
tions, the transmissivity and storativity may have different
magnitudes in some domains (Rushton 2003). The assump-
tion that hydraulic parameters are constant in the entire space
located between the pumped borehole and the farthest limit of
the field where pumping no longer exerts an influence may
lead to false conceptual and quantitative interpretations. The
hydrodynamic behavior of such composite systems has been
studied analytically, assuming a radially symmetry of hydrau-
lic domains (Barker and Herbert 1982; Bourdet et al. 1983;
Butler 1988; Ambastha 1989; Oliver 1990, 1993; Roberts
et al. 1996; Issaka and Ambastha 1999; Jordan and Mattar
2000). These models, referred to as patchy aquifers or com-
posite domains, are intended to investigate pumping test re-
sponses when the local region in the vicinity of the pumped
borehole is not representative of the reservoir’s general hy-
draulic properties. For analytical suitability, the patch is
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represented by a cylinder whose center is embodied by the
pumping well. The predicted drawdown response of a linear
interface between the two domains is more complex due to the
fact that induced flow geometry is non-uniform in a 2D space.
Such a configuration is also referred to as a linear strip or
multi-strip reservoir. Guo et al. (2012) proposed an analytical
solution for a three-region channel-aquifer combined with a
dual porosity model. Flow restriction into a corridor makes it
possible to process the interferences between flow domains as
mathematically suitable one-dimensional (1D) problems.
They obtained successive linear flow regimes before and
after lateral domains were reached by the depressurization
front. Ambastha et al. (1989) proposed an analytical solution
for a Btwo-region reservoir^ separated by a communicating
fault, and for a strip aquifer, with emphasis on skin effects;
however, the study focussed on the latter configuration with
little development on the former, and the flow into the fault is
not explicitly modeled. This nonintersecting finite-
conductivity fault problem was later analytically approached
by Abbaszadeh and Cinco-Ley (1995). These authors postu-
lated that the problem could be reduced to three solvable
problems, independent, radial and linear: (1) linear flow into
the fault; (2) flows into the two embedding semi-infinite res-
ervoirs are converted into infinite-acting flow problems by
mirror-imaging them against the fault plane. The equality of
pressure and fluxes is finally imposed at the domain interfaces
in order to preserve hydraulic continuity. Butler and Liu
(1991) developed a semi-analytical solution for a two-region
aquifer split by a more transmissive strip which, under certain
conditions (small transversal extent), tends to behave like a
fault. Interestingly, although they used different modeling ap-
proaches, Abbaszadeh and Cinco-Ley (1995) and Butler and
Liu (1991) arrived at conclusions that converge, in the sense
that they predict a specific time-period where the aquifer
response to pumping is predominantly governed by the prop-
erties of the nonintersecting fault or strip, namely where the
flow dimension is equal to 1.5 (equivalent to the bilinear flow
regime, see Rafini and Larocque 2009). Dewandel et al.
(2014) submitted an analytical multi-domain model for BT^
shape aquifers, which are formed by a deep and narrow region
(representing a vertical fault) surrounded by two shallower
and less transmissive domains. The interferences of transient
depressurization into the fault and adjacent flow domains pro-
duce time-variant drawdown regimes that are analytically ap-
proximated as several infinite series of well-image functions.

This study numerically investigates the transient behaviour
of aquifers composed of two laterally juxtaposed flow
domains with differing hydraulic properties where the non-
pumped domain may be either more transmissive or less
transmissive then the pumped one. A method is proposed
which predicts a singular theoretical response, in the form of
a flow-dimension-sequence signature, which makes it possi-
ble to identify such aquifers in pumping test contexts. Classic

analytical solutions account for the flow behavior of
juxtaposed hydraulic domains in extreme hydraulic condi-
tions, including the impermeable barrier (i.e., non-
conductive boundary) and constant-head boundary solutions
(i.e., infinitely conductive). The numerical experiments
described here investigate intermediate cases in which both
domains have finite conductivities and the interface is non-
impermeable. The pressure transfers between both domains
are deeply investigated as well as their time-variant relative
contribution in supplying groundwater to the pumping well.
Several cases are considered, with and without the occurrence
of a fault at the interface between both domains. Cases where
the non-pumped domain is respectively more transmissive
and less transmissive than the pumped domain will hereafter
be referred to as leaky and non-leaky cases. These two limiting
cases deeply diverge from a hydrodynamic standpoint in that
the domain which is predominantly supplying the well is the
pumped domain or the non-pumped domain. The term leaky is
borrowed from Hantush (1960) because the conceptual con-
figuration to which this paper refers is a horizontal equivalent
of the classic leaky aquifer model: in both cases, the pumped
groundwater is supplied by a distant reservoir that is juxta-
posed, either horizontally or vertically, to a less transmissive
pumped aquifer; however, both problems are drastically dif-
ferent from a hydrodynamic perspective (i.e., geometry of
leaky flow).

Materials and methods

The numerical simulations are performed using the
HydroGeoSphere code, which is a three-dimensional finite-
element code that has been used by numerous hydrogeology
researchers (Brunner and Simmons 2012). Constitutive diffu-
sion equations are solved using the control volume method
with a fully implicit time discretization. The spatial
discretization uses orthogonal tridimensional prisms of vari-
ous sizes that are adjusted to anticipated drawdown variations.
Hydraulic continuity between sub-domains (well/matrix or
matrix/matrix) is implicitly ensured by superposing respective
flow contributions at the interface nodes.

The inner boundary conditions are those of a pumping test.
The wellbore is vertical, unidimensional and entirely cross-
cuts the aquifer. The source has no storage and a screen radius
of 0.05 m. The pumping rate,Q, is equal to 4.17 × 10−4 m3 s−1

or 1,500 L h−1. The upper and lower boundaries are imperme-
able. The initial head is uniform over the entire domain and is
equal to the constant-head values at the lateral boundaries.
Time sampling is logarithmic and contains approximately
100 steps, beginning at 10−2 and ending at approximately
109 seconds.

The flow domain is designed to be artificially large (4 × 105

by 4 × 105 by 42 m), the duration of the simulated pumping
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tests is intentionally long (109 and 1011 s), while the distance,
d, between the pumping well and the interface, is set at 2 m.
These settings were designed for numerical experiment suit-
ability, i.e., to Bscan^ a wide spectrum of parameter combina-
tions to fully constrain the behavior of the system, without
changing the model’s geometry. Explicitly, to properly con-
strain the impact of a given parameter, it is necessary to per-
form numerous simulations while changing only this param-
eter, from the lower limiting case to the upper limiting case.
Accordingly, the simulations were configured to optimize the
visibility of successive flow regimes without changing other
input parameters, even when covering a large panel of param-
eter combinations (e.g., aquifers transmissivities, Tm, ratios).
The implications of the modelling settings are addressed in the
section ‘Discussion’, notably on the matter of using the results
in real-world conditions. First, the technical note presents the
case of laterally juxtaposed flow domains with no fault at the
interface. Then, the effect of a finite-conductivity fault on
transient flow interactions between the two domains is
analysed. Such disposition of a fault between two distinct
lithological domains is a widespread tectonic situation, since
the fundamental characteristic of a fault is that it splits and
offsets two contiguous units. The aquifer thicknesses, b, are
set to 42 m. The interface between the two flow domains is
vertical. Lateral boundaries oriented parallel to the Oy axis
possess constant heads equal to 80 m, whereas those oriented
parallel to the Ox axis are no-flow boundaries (Fig. 1). When
present, the fault is vertical, 0.3 m wide and entirely crosscuts
the aquifer. It is considered as a tabular vertical thin aquifer in
itself, which allows for transient flow to be resolved in a sim-
ilar fashion to a porous medium. Thus, the fault is viewed as a
Darcian medium rather than a Poiseuille fracture. The
Poiseuille model is considered inadequate to represent
macro-scale faults, which are much thicker than infra-meter-
scale fractures and contain material-filled core rather than void
space. The hydraulic properties are isotropic in the entire flow
domain. The drawdown response examination focuses on
time periods prior to reaching the lateral boundaries. The size
of the mesh in the vicinity of the pumping well is 0.05 m,
which progressively increases toward the boundaries. No ver-
tical flows are generated from these configurations. Therefore,
the vertical discretization is strongly restricted (three cells), for
computing purposes. Only one flow domain is pumped (do-
main A); the non-pumped flow domain (domain B) can be
variably conductive, and hence may or may not produce leak-
age from domain B to domain A. Finally, numerous simula-
tions are performed to produce a systematic analysis of the
effect of each hydraulic input parameter on the macroscopic
response rendered at the pumping well. These series of simu-
lations are designed to achieve a general flow behavior in
which the sensitivity of every parameter is known.

Results from numerical simulations are analysed in terms
of drawdown log-derivative ds/dlog(t) and of flow dimension

n that is calculated following the definition of Barker (1988),
n = 2 – 2(p), where p is the slope of the log-derivative series.
This equation of n postulates an asymptotic approximation
that is, from a practical standpoint, valid after a very short
pumping time at the pumping well.

Results

Contiguous aquifers with unfaulted interface

Influence of the conductivity ratio

The pumping well drawdown responses obtained from flow
simulations with varying conductivity of the non-pumped do-
main,KmB, are presented in Fig. 2. A series of simulations was
performed to assess the influence of KmB being lower or
higher than the pumped domain conductivity, KmA, by incre-
mentally changingKmB, starting withKmA =KmB. The signals
are composed of three successive flow regimes: (1) early ra-
dial flow corresponding to the normal diffusion into domain A
before domain B is reached; (2) a transitional period marked
by a characteristic derivative slope of p = −1 (n = 4); and (3)
late radial flow corresponding to a simultaneous diffusion into
both domains. The elevation, a, of the plateau formed during
the radial flow regime is an inverse function of the conductiv-
ity. This function is simply derived using the Cooper-Jacob’s
model: a = 2.3Q/4πT, where T is the transmissivity and Q is
the pumping rate. Here, the late radial plateau elevation, ar2,
displayed in Fig. 3, provides an apparent conductivity, Kapp.
The positive vertical offset of this plateau between the early
and late radial stages is equal to log (2) when KmB < < KmA

(i.e., the non-leaky case) because Kapp =KmA/2. This results in
the classical impermeable boundary model (i.e., doubling the
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Fig. 1 Configuration used for the numerical flow simulations in laterally
juxtaposed flow domains. The grid corresponds to the spatial
discretization. Two cases are considered depending upon the occurrence
of a fault at the interface between domains A and B
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drawdown slope on conventional semi-log plots). However,
when KmB > >KmA (i.e., leaky cases), the vertical offset is
negative and proportional to KmB in such manner that
Kapp =KmB/2; hence, when the non-pumped, more transmis-
sive aquifer starts being depressurized, both the drawdown
rate and its log-derivative drop. It is worth noting that, on a
classic semi-log plot, this drop produces an apparent stabili-
zation that is likely misinterpreted as the attainment of a re-
charge boundary (Fig. 2). Finally, these observations lead to
the conclusion that the apparent conductivity is equal, in both
configurations, to half the highest conductivity.

A series of simulations with varying KmB and KmA values
achieved the relationship Kapp = (KmB + KmA)/2, which is
shown in Fig. 4. For each of the three lines shown in this
figure, the zone in which both conductivities significantly

affect Kapp is represented by the curved portion of the line
between the straight portions that correspond to the domi-
nance of either KmA (horizontal straight portion, i.e., KmB is
negligible) or KmB (unit slope straight portion, i.e., KmA is
negligible). This curved portion is nearly an order of magni-
tude wide along the KmB axis, which means that the lower
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conductivity becomes practically negligible when the conduc-
tivity differences between both flow domains exceed half an
order of magnitude (i.e., a factor of 3.16), all other parameters
being equal.

During the second radial flow regime, the macroscopic
behavior of the system, as given by the drawdown response
at the pumping well, is controlled by the most conductive flow
domain because drawdown propagation in the less conductive
domain is slower [r(t) ∼ (Km)

0.5]. Thus, the portion of the
cross-flow area (i.e., the surface of the front of depressuriza-
tion) in this domain becomes negligible compared with the
portion that propagates into the most conductive domain in
such a manner that its depressurized volume becomes lower
than that of the most conductive domain, as does its contribu-
tion to supplying water to the pumping well. This phenome-
non is perfectly illustrated in Fig. 5 for the leaky case: the
relative groundwater contributions from both domains to the
pumping well becomes inverted over time, as the aquifer
response becomes controlled by the properties of the non-
pumped, and more transmissive, aquifer.

The outward propagation of drawdown into the two half-
spaces forms two half front pulses growing at two different
rates (Fig. 6). Only the half that propagates into the more
conductive domain has a significant effect on the drawdown
response at the pumping well during the late radial stage. The
response is entirely controlled by the transient growth of the
dominant front, whether or not this half front evolves into the
flow domain that is directly pumped. In other words, if the
non-pumped domain is the most conductive, the properties of
the pumped domain have no influence on the drawdown re-
sponse measured at the pumping well during this late radial
stage. Finally, as the effective cross-flow surface growth is
restricted to a half space, it takes the shape of a half cylinder,
and the transmissive area is half that of an entire cylinder,
which explains why the apparent conductivity is half the real
conductivity of the most conductive domain.

In the leaky case, the significant portion of the domain
supplying the well schematically forms a half cylinder in do-
main B (Fig. 6b), during the late radial stage; hence, from a
hydrodynamic perspective, this can be regarded as an inverted
impermeable boundary model (with the pumped domain
playing the role of the barrier), albeit the less conductive do-
main is not actually impermeable. Analytically, the respective
drawdown influences of both half fronts at the pumping well
can be separately described. Based on the numerical simula-
tion results, these drawdowns can be represented using the
superposition of two impermeable-boundary radial solutions:
one normal (domain B plays the role of barrier) and one
inverted (domain A plays the role of barrier; see Fig. 6).
These two solutions correspond to two half front pulses with
unequal radii (approximate cylinders), one being largely dom-
inant depending on the respective properties of both domains.
The impermeable-boundary solution classically uses an

image-well analysis, which is based on the superposition of
a fictitious well that is symmetrically opposite the true well,
beyond the barrier. It is theoretically pumped at a rate equal to
that of the true well in order to mimic the boundary effect
(Ferris 1949; Fenske 1984); thus, the behavior of the system
may be represented by four Theis functions: two with KmA

and Ss_mA properties (normal impermeable-boundary solution
with real pumping in domain A and its image in domain B; SS
is specific storage) and two with KmB and Ss_mB properties
(inverted impermeable-boundary solution with Bfalse
pumping^ in domain B and its image in domain A). For each
couple, one term (pumping or image) would have a distance
equal to the well-casing radius and the other a distance equal
to 2d; however, this assumption requires further validation.
Separately, the two wells used in this solution can represent
some of the flow regimes numerically achieved in this study,
including early radial and late impermeable-boundary radial
(non-leaky case) conditions; however, the late radial flow re-
gime, or the leaky, inverted impermeable-boundary case
(Fig. 6b), cannot be described by a trivial addition of these
four terms, nor can a general solution be proposed that in-
cludes all flow stages. The reason is that this regime occurs
in domain B, while in every case the early radial flow stage
occurs in domain A; thus, an analytical solution to this prob-
lem requires further work.

Finally, it should be noted that the Ss_mA/Ss_mB ratio does
not impact the shape of the derivative response, since it does
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not influence the elevations of the plateaus. It only slightly
affects the shape of the transition n = 4 stage.

Calculation of hydraulic parameters

The diagnostic tool for the unfaulted leaky model is formal-
ized in Fig. 3 and Table 1. The time, td, corresponds to the time
it takes the front pulse to reach domain B. The solution of the
set of three equations (Eqs. 1, 2 and 5 in Table 1) permits the
estimation ofKmA, KmB and the distance, d, from the pumping
well to domain B; however, this equation for td, which was
proposed by Banton and Bangoy (1999), must be considered a
first-order approximation. The form of the equation is correct
because it is derived from the normal diffusion law r 2 =C (K/
Ss) t, but stating a diffusion coefficient, C, equal to 2.25 is
based on the Cooper-Jacob solution (by posing drawdown
equal to zero), which is not valid at early pumping times.
During this time period, drawdowns are expected to diffuse
in a strictly Theissianmode, which is faster due to a coefficient
C equal to 4π based on the Theis solution, a value which falls
much closer to, if not exactly on, the value derived from the
numerical simulations of this study. Moreover, this equation
does not account for any delay in the propagation of the front
pulse caused by wellbore depressurization and/or skin effects;
hence, Eq. (5) likely underestimates (strong wellbore storage

or skin effect) or overestimates td (C greater than 2.25). This
issue remains unresolved and requires further investigation, as
it falls outside the scope of this article. In particular, it should
be pondered that time-distance scaling relationships may vary
with successive, radial and non-radial flow regimes. The for-
mula published by Banton and Bangoy (1999) will be consid-
ered acceptable here as a first estimate.

Analysis of observation well data

Simulated drawdown behavior in synthetic observation wells
(OW) at various distances from the pumping well are
analysed. Specifically, this investigation focuses on the case
of interest where the non-pumped domain B is the most con-
ductive and hence predominantly supplies groundwater via
the pumped domain A (leaky case). To this end, KmB is set
two orders of magnitude higher than KmA.

Figure 7 depicts the derivative responses obtained at OWat
various distances from the pumping well. Only OWs located
along the axis perpendicular to the interface are displayed, for
illustrative purposes. At equal distance from the pumping
well, OW located along other directional axes give derivative
responses ranging between western and eastern OWalong the
Ox axis. Two plateaux are exhibited, corresponding to the
successive predominance of radial flow regimes occurring
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respectively in domains A and B as explained in the preced-
ing. These two plateaux (early radial plateau and late radial
plateau) are visible particularly well on the normalized t/r2

plot. Due to the short distance (2 m) between the pumping
well and the interface, the duration of the early radial plateau
is short. OW located at distances less than 2 m behave simi-
larly both on the west and east sides of the pumping well a

predictable result, since domain B has not yet been reached.
At greater distances, the influence of an early radial flow re-
gime is practically invisible on western OW, while eastern
OW display a gradational transition to the late radial plateau
elevation.

An unexpected result is that, among the eastern OW, i.e.,
those located on the side opposite to the interface, drawdown

Table 1 Algebraic expressions of the graphical features of the models: segment intercepts and critical times

Eq. number Expression Graphical feature Source

1
ar1 ¼ 2:3Q

4πbKmA

Early radial plateau elevation Modified from Cooper and Jacob (1946)

2
ar2 ¼ 2:3Q

4πb KmAþKmB
2ð Þ

Late radial plateau elevation This study (modified from Cooper and Jacob 1946)

3
a f ¼ 2:8Q

4πbT f
0:5 Ss m

KmAþKmB
2ð Þ

0:25

Intercept of the n = 1.5 segments Modified from Rafini and Larocque (2009)

4
atr ¼ 0:21d2Q

bηmAKmA

Intercept of the n = 4 segments This study

5
td ¼ 0:44 d2

ηmA

Reaching of the interface Cooper and Jacob (1946), Banton and Bangoy (1999)

6
t2* ¼ 0:58 d2

ηmA

KmB
KmA

Intersection time between segments n = 4 and late
n = 2

This study

7
t2AB ¼ 0:44T f

2Ss m
KmAþKmB

2ð Þ3
Intersection time between segments n = 1.5 and late

n = 2
Modified from Rafini and Larocque (2009)

8
t1 ¼ 0:11S f

2

KmSs m

Beginning of the diffusion slow-down in the fault Modified from Rafini and Larocque (2009)

Note t2
* was obtained by assumingKmB > >KmA, and hence is exclusively valid for the leaky model. Ss_m is the bulk specific storage coefficient, which

encompasses Ss_mA and Ss_mB. It is shown that Ss_m ≈ (Ss_mA + Ss_mB)/2. Sf is the fault’s storage coefficient. Other parameters are introduced in the text
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regimes do not rapidly adjust to the dominant aquifer behavior
that is obtained at the pumping well and in the western OW.
Indeed, at late time, when the pumping well response clearly
shows that a late radial flow regime has settled into the aquifer
and dominates its macro-scale hydrodynamics, the drawdown
derivative in these distant eastern OW does not merge with
this radial regime but rather displays a prolonged gradational
transition. This implies that, while the drawdown regime tends
to equilibrate over the entire aquifer, the attainment of such
homogenous dynamic state is very slow in regions distant
from the hydraulic heterogeneity governing the global behav-
ior. This study’s results suggest that, over the time scale of a
pumping test, the state of equilibrium may not be obtained in
distant OW. The greater the distance between the eastern OW
and the pumping well and the contrast in conductivity be-
tween both aquifers, the later the late radial plateau settles after
the transitional stage. This phenomenon may impede its
proper identification in real pumping test conditions. This
conclusion meets that of Ambastha et al. (1989).

After the transitional stage, drawdown behaviors in all OW
are governed by the late radial flow regime. This regime is
strictly controlled by the transmissivity of the non-pumped
domain B, since domain B is more transmissive, as explained
in previous sections. In other words, the transmissivity one
would estimate by a classic Cooper-Jacob interpretation of
the late radial regime measured in an OW located in domain
Awould actually correspond to the transmissivity of domain B
(or more precisely, half of it as explained previously). This
counteracts the general belief that the transmissivity measured
at an OW is always a proxy to the T-field into the area between
the OW and the pumping well. Instead, the results indicate
that, after late-time stabilization of the derivative, the apparent
T value actually corresponds to that of the more transmissive

region of the aquifer, regardless of its spatial disposition in
relation to the OW.

A classic multi-well analysis in homogeneous media con-
sists in plotting OW log-distances versus drawdown at a given
pumping time. A straight line is obtained whose slope and
vertical offset, respectively, allow estimating spatially aver-
aged values of T and S, using the Cooper-Jacob model. In
non-uniform or heterogeneous media, the points are not ex-
pected to form a straight line but rather several lines or curves
expressing the successive flow regimes that occurred before
the targeted time. The success of such analysis depends on the
spatial equilibrium of the current drawdown regime over the
entire aquifer. Any target time into transitional stages between
two spatially homogenous drawdown regimes may not be
likely to produce interpretable plots; hence, late-times are pre-
ferred, which more probably correspond to such equilibrium
states, and investigate a larger volume of aquifer. Figure 8b
displays the distance-drawdown plot for 100 OW placed
around the well at distances ranging from 0.1 to 300 m, along
eight directional axes (Fig. 8b). OW located along the Ox axis
are symbolized by circles (east side) and crosses (west side).
Drawdowns at these OW clearly exhibit two straight lines,
with slopes changing abruptly (western OW) or gradually
(eastern OW). Such responses are in accordance with the
multi-well derivative analysis depicted above, where eastern
OW flow regimes gradually evolve from the first to the second
radial flow regime, while western ones display a short transi-
tion. These two straight lines depict the two successive flow
regimes occurring during the well test, induced by the co-
existence of two flow domains. Using the Cooper-Jacob
equationK = 2.3Q/2π p, where p is the slope, one can estimate
the apparent conductivity Kapp2 which is equal to (KmA +
KmB)/2. OW located along other directional axes than Ox
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display drawdown levels with intermediate behaviours, i.e.,
ranging between the two lines formed by Ox-directed western
and eastern OW drawdowns.

This distance-drawdown plot is a useful tool to diagnose
the presence of two laterally contiguous flow domains, when
two straight lines are exhibited either with a gradual or abrupt
change. It provides valuable insight, along with the derivative
and flow dimensional analysis, allowing for confident
interpretation of this conceptual model.

Contiguous aquifers with faulted interface

Rafini and Larocque (2009) proposed an interpretative model
for aquifers crosscut by a steeply inclined conductive fault that
is not directly connected to the well. These results corroborated
the analytical model proposed by Abbaszadeh and Cinco-Ley
(1995) and provided the flow dimension diagnostic signature (2
– 4 – 1.5 – 2). This signature indicates the following chrono-
logical succession of flow regimes: (1) an early radial flow
before the fault is reached, with a plateau elevation equal to
2.3Q/4πTm, where Tm is the embedding aquifer transmissivity;
(2) a characteristic transitional regime n = 4; (3) the n = 1.5 typ-
ical fractional response of a conductive fault (also referred to as
bilinear); and (4) a late radial flow regime that is identical to the
early radial flow, duringwhich the fault no longer influences the
aquifer (Rafini and Larocque 2009). At this late radial stage, the
aquifer response is controlled only by the hydraulic properties
of the embedding aquifer, and the fault becomes transparent. In
this model, the fact that early and late radial stages are identical
(in other words, that their plateau elevations are equal) is a key
point that indicates that flow domains on both sides of the fault
are identical and that the fault does not juxtapose two distinct
lithological units. Here, the study numerically investigates the
case in which the fault embodies the interface between two
distinct hydraulic blocks. The parameters of the numerical

simulation are analogous to that described in the previous sec-
tion in all aspects, except for the presence of a third hydraulic
unit (the fault), which is much thinner and located between the
two domains (Fig. 1). The simulation strategy is also analogous
to the one explained previously, wherein a series of sensitivity
analyses are performed to independently identify the respective
impacts of each hydraulic parameter or combinations of
parameters on the macroscopic response recorded at the
pumping well.

The drawdown response obtained at the pumping well
is presented in Fig. 9, in the form of a sensitivity analysis
of coupled KmB and Ss_mB. These parameters are progres-
sively modified by steps of half an order of magnitude,
which increase and decrease from the equality to domain
A properties (dotted curve). Modifying these parameters
in the same way was set for illustrative purposes, to keep
the domain B diffusivity ηmB = KmB/Ss_mB constant and to
optimize the visibility of the successive flow regimes. A
succession of four flow regimes marked by flow
dimension values 2, 4, 1.5, and 2 is obtained, which is
analogous to the succession achieved by Rafini and
Larocque (2009) for a single flow domain crosscut by a
fault, except that in this case, the early and late radial flow
regimes display unequal plateau elevations. These two
early and late radial flow regimes are identical to that of
the unfaulted model addressed in the previous section.
Remarkably, the obtained sequence turns out to be a triv-
ial combination of the respective signatures generated by,
respectively, a single conductive fault embedded into an
aquifer (n = 1.5), and contiguous aquifers with unfaulted
interface (n sequence 2 – 4 – 2 with unequal plateau
elevations).

Similar to the unfaulted cases, the apparent conductiv-
ity calculated from the late radial plateau elevation corre-
sponds to the arithmetic mean of the conductivities for
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886 Hydrogeol J (2017) 25:877–894



domains A and B. Figure 9 illustrates that this elevation
inversely and linearly evolves with KmB (as indicated by
the gray arrow; the vertical offset is a factor that is equal
and inverse to the variation of KmB), when KmB exceeds
KmA. When KmB is less than KmA, the elevation of the late
radial plateau tends to remain equal to twice the early
radial plateau elevation, mimicking the behavior of non-
leaky cases described in the previous section. Moreover,
the simulations demonstrate that during the preceding
n = 1.5 flow regime, the vertical offset, af, of the log-
derivative straight-line response (af strictly equals ds/d-
log(t) at log(t) = 0, see Fig. 10) evolves as an inverse
square root function of KmB Ss_mB when KmB > KmA, as
visible in Fig. 9. Hence, af ∼ (KmB Ss_mB)

–0.25. The effects
of other hydraulic parameters, such as KmA, Ss_mA, Tf, Sf,
b and Q, on af were analysed, leading to Eq. (3) (Table 1).
The simulations are also designed to identify eventual
non-independent factors, which would express in the
equation through the presence of additive or subtractive
operators. The only additive operator is KmB+ KmA. This
factor does not modify the effect of other parameters be-
cause it is situated at the downstream end of the hierar-
chical structure of the equation. Finally, this equation is
analogous in its form to the general equation of aquifers
crosscut by a steeply inclined conductive fault (Rafini and
Larocque 2009, 2012).

The time, t2AB, which marks the transition between
the fractional and late radial flow regimes (Fig. 10), can
be derived using the ar2 and af equations displayed in
Table 1 (Eqs. 2 and 3). Thus, a graphical interpretation
of af and t2AB makes it possible to calculate the fault
transmissivity, Tf, and the apparent specific storage of
the embedding aquifer, Ss_m, using Eqs. (3) and (7),
after having previously derived the apparent transmissiv-
ity of the embedding aquifer, 0.5 (TmA + TmB) from the
interpretation of ar2 using Eq. (2).

Discussion

Summary of the conceptual models

The flow dimension sequences obtained are summarized in
Fig. 11. The (2 – 2) sequence with non-equal plateau eleva-
tions can be interpreted as the presence of two contiguous
hydraulic domains with non-equal properties. The positive
or negative vertical offset between both plateau elevations
indicates whether or not the juxtaposed non-pumped domain
is more transmissive than the pumped one. The apparent trans-
missivity as derived from the late plateau’s elevation (Eq. 2) is
the arithmetic mean of both aquifers. This result corroborates
Barker and Herbert (1982) for Bpatchy^ aquifers, Butler and
Liu (1991) for the strip aquifer, and Guo et al. (2012) for linear
aquifers. The n = 1.5 segment between the two plateaus indi-
cates that the interface between aquifers is a conductive fault.
A graph of various segments’ intercepts and intersection times
leads to the estimation of the hydraulic properties of the fault
and aquifers, using equations displayed in Table 1.

The results interestingly imply that when the non-pumped
domain is more transmissive than the pumped domain by one
or more orders of magnitude, the large-time response at the
pumping well is independent of the pumped domain’s hydrau-
lic properties. This also aligns with the conclusions of Barker
and Herbert (1982) regarding radial Bpatchy^ aquifers. It is a
common belief in applied hydrogeology that Bbulk^ aquifer
properties are obtained by analysing the late rather than early
time straight line on drawdown semi-log plots when several
straight segments are present with non-equal slopes. Although
in a first approach, such bulk properties appear to be represen-
tative of reality because they are averaged over an extended
volume of depressurized aquifer, in fact, these results show
that the bulk properties may actually not describe the targeted
aquifer but rather may correspond to a blind, more transmis-
sive hydraulic region which is not intercepted by the borehole.
The obtained apparent transmissivity is in actual fact half the
real transmissivity of this region.

The contour maps displayed in Fig. 12 make it possible to
represent the transient diffusion of the front pulse during the
early and mid-time of a pumping test, before and during the
non-pumped domain and when the fault begins to exert a
significant influence on the general hydrodynamics of the
aquifer. For the leaky models (Fig. 12a,b), the non-pumped
aquifer predominantly supplying groundwater to the well is
visible as the front pulse becomes larger than that of the
pumped aquifer, because it diffuses faster. Predictably, in
non-leaky models, the non-pumped domain is practically
non-depressurized. In both hydraulic configurations, the pres-
ence of a conductive fault at the interface leads to a longitudi-
nal drastic extension of the area of influence of the pumping,
in such a manner that regions far afield are likely
depressurized. If a more greatly transmissive remote area is
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Fig. 10 Schematic illustration of the successive flow regimes predicted
in the faulted leaky model, and their associated graphical features (see
Table 1 for equations)
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reached by such means, into which the front pulse expands
rapidly and becomes dominant, it is likely that the pumping
well response will reflect the hydraulic properties of this dis-
tant region.

As a general statement, the results indicate that the aquifer
response is governed by the region with the highest

transmissivity rather than the lowest, contrary to what may be
apprehended intuitively. The reason is that the response at the
pumping well reflects the expansion of the front pulse. The
apparent transmissivity obtained at a given pumping time re-
flects the region into which the front pulse is currently and
predominantly expanding, i.e., the most transmissive region,
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even if that region is not connected to the pumping well, rather
than to regions that were previously spanned by the front pulse.

Practical use of the models

Duration and visibility of the segments

The duration of simulations was intentionally set to be ex-
tremely long and the distance between the pumping well and
the interface very short, for experimental and illustration pur-
poses. A large number of numerical simulations were per-
formed in order to constrain the models that are presented in
Figs. 3 and 10 and in Table 1; the curves displayed in Figs. 2
and 9 are only illustrative examples. Since the influence of
each input parameter on the general response has been strictly
deciphered, it is very easy to understand the manner with
which the resulting theoretical responses are not restricted to
the singular combinations of hydraulic parameters of the pre-
sented simulation cases. For instance, changing d to 20 m and
KmA to 10−4 m s–1 would produce a strictly identical result to
that presented in Fig. 2, for equal KmA/KmB ratios (except, of
course, that the early radial plateau would be two log-cycles
lower). Similarly, a decrease of Tf by a half order of magnitude
causes the late radial plateau to begin one log-cycle earlier,
according to the definition of t2AB (see Eq. 7 in Table 1).

The critical duration of one log-cycle has been recommend-
ed by Beauheim et al. (2004) for a proper identification of a
derivative straight segment prior to the estimation of the asso-
ciated flow dimension. Using this criterion, it can be seen in
Fig. 2 that, for a 3-day-long pumping test, the complete (2 – 4 –
2) sequence is visible for any KmA/KmB ratio greater than 10−2.
For a 2-week-long test, this critical ratio is practically 10−3. For
shorter tests, or lower KmA/KmB ratios, the late radial stage will
not have time to settle before the end of pumping. Similarly,
Fig. 9 shows that a two-week long pumping test is necessary to
allow for the entire combination of sequences (2 – 4 – 1.5 – 2)
to be observed in optimal conditions. This is for the specific
combinations of hydraulic parameters shown Figs. 2 and 9; a
generalization is provided into the next sections.

The early radial stage will be lacking in cases where a fast
diffusion into the pumped aquifer – high ηmA – is conjugated
with a short distance d between the interface and the pumping
well: d 2/ηmA is the controlling factor, according to the defini-
tion of td (see Eq. 5 in Table 1). In real-world conditions where
a buffer period of 102 s might be considered reasonable to
cover pumping rate stabilization and wellbore storage effects,
i.e., before the drawdown response actually reflects real aqui-
fer conditions, the settlement of the early radial stage during
one log-cycle requires that td = 103 s. Referring to td = (d 2/
ηmA)/2.25, in order for the early radial stage to be visible,
the criterion is d 2/ηmA ≥ 2,250 s. If the pumped aquifer has
conductivity KmA as low as 10−8 m s−1, and assuming
Ss_mA = 10−6 (two realistic lower limiting values for confined

hard-rock aquifers, e.g., Batu 1998), this brings the minimum
distance dmin to 4.7 m, while to the contrary, the upper limiting
values KmA = 10−3 m s−1 and Ss_mA = 10−5 m−1 give dmin =
474 m. These constitute realistic distance ranges for
real-world settings.

For the unfaulted leaky model, the minimum KmA/KmB

ratio for late radial stage to settle one log-cycle during a given
pumping test duration, tpump, can be estimated by posing t-
2* ≤ tpump/10, where t2* is the approximated beginning of this
radial stage. Following the equation of t2* (see Eq. 6 in
Table 1), this gives 0.21 (d2/ηmA) (KmB/KmA) ≤ tpump/10. By
considering d 2/ηmA = 2,250 s, it can hence be determined that
the full (2 – 4 – 2) sequence will be visible for 3-day, 2-week
and 3-month-long pumping tests, for any KmA/KmB ratio
higher than, respectively, 10–1.74, 10–2.4 and 10–3.22. For
non-optimal values of d 2/ηmA, these limiting ratios will in-
crease by a factor equal to d 2/(2,250 ηmA). To conclude, the
full exhibition of the (2 – 4 – 2) sequence is a realistic forecast
in hard-rock aquifer contexts where the conductivity contrast
does not exceed two to three orders of magnitude depending
of the pump test duration (3 days to 3 months), for optimal
values of d 2/ηmA. However, the latter ratio may constitute a
more restrictive control on the full observation of the se-
quence. A valuable insight is that, for tests that last 3 days or
less, the response (2 – 4) is predicted where KmA is low and d
is high, for almost all conductivity log-ratios greater than 1.5.
These results cause one to question the universal interpretation
of the (2 – 4) sequence as a recharge boundary in short- and
medium-term pump tests.

For the faulted leaky model, the experiment revealed that
the starting time, t2AB, of the late radial stage evolves with the
ratio Tf

2/(KmA +KmB)
3, as depicted in Eq. (7) (Table 1). A

consequence is that a very high conductivity of the fault or a
low conductivity of embedding aquifers will tend to delay the
settlement of this radial stage. It will be exhibited over one
log-cycle at the end of a pumping test of duration tpump if
t2AB < tpump/10, hence Tf

2/Km
3 ≤ 5.6 × 10−2 tpump/Ss_m, accord-

ing to Eq. (7). For the sake of simplicity, the terms Km and
Ss_m are used, which are the properties of the most conductive
embedding aquifers (an acceptable first-order approximation
thus is Km = 2 × Kapp). Assuming Ss_m = 10−5 m−1 and t-
pump = 1.2 × 106 s (2 weeks) , th is leads to T f

2 /
Km

3 ≤ 6.7 × 109. In other words, the late radial stage will be
visible within 2 weeks in real-world cases where the contrast
between the fault transmissivity and the conductivity of the
most conductive embedding aquifer is not drastic, namely if
log (Tf/Km

1.5) ≤ 2.4 + 0.5 log (Ss_m). Moreover, according to
previous results (Rafini 2008; Rafini and Larocque 2009),
the occurrence of n = 1.5 fractional flow is directly governed
by the diffusivity ratios ηf/ηm: it is forecast for any value of this
ratio greater than 1 and a first-order approximation of its log-
duration is given by the square of this ratio. Furthermore, these
authors achieved Eq. (8) (Table 1) for the beginning time, t1,
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representing the diffusion slow-down into the fault, a necessary
condition for the n = 1.5 flow regime to occur. Hence, this
regime will exhibit over one log-cycle if the two following
conditions are met: (1) the regime begins before tpump/10

2; i.e.,
t1 ≤ tpump/10

2 which gives 11 Sf
2/(Km Ss_m) ≤ tpump, and hence

Km ≥ (11/tpump) (Sf
2/Ss_m); and (2) the regime lasts at least one

log-cycle, i.e., ηf/ηm ≥ 100.5, hence Tf/Km ≥ 100.5 Sf/Ss_m. To set
ideas, assuming Ss_m = 10−5 m−1, Sf = 5 × 10−5 (as fault-rock
typically is slightly more compressible than sound rock) and
tpump = 1.2 × 106 s (2 weeks), the n = 1.5 stage will be visible if
Km ≥ 2.3 × 10−9 m s−1 and Tf/Km ≥ 15.8, both of which are
highly plausible conditions. Going further, combining these
criterions with that depicted above for the occurrence of the
late radial stage leads to the following conditions of exhibition
for the (1.5 – 2) sequence: Km ≥ 2.3 × 10−10 m s−1, Tf/
Km ≥ 15.8 and Tf

2/Km
3 ≤ 6.8 × 109. These constitute non-

restrictive conditions towards the model’s validity in the real
world. Ultimately, for the complete (2 – 4 – 1.5 – 2) sequence,
all these criterions must be verified, along with some temporal
constraints on the distribution and visibility of the four succes-
sive segments into realistic pump test timelines. Taking the
minimum, td = 1,000 s, for the early radial stage to settle (see
the preceding), plus one log-cycle for each segment, gives
107 s (3.7 months). Adding the transition time-periods leads
to unrealistically long times. A consequence is that this se-
quence will likely occur in real-world conditions in a truncated
form: the early and/or the late radial stage will be partially
visible or even lacking. Also, the n = 4 or n = 1.5 segments will
atrophy under some combinations of hydraulic parameters—
for instance, it is shown here that the log-duration of the n = 4
segment is a condition of the ratio KmB

0.2/KmA
0.6, as well as

the product (KmB Tf)
0.2. In contrast, the n = 1.5 segment’s log-

duration is a function of (ηf/ηm)
2, as obtained by posing t2AB/

t1, where the subscript m refers to the most conductive aquifer
(which must be KmB concerning the 4 – 1.5 sequence). The
n = 1.5 segment’s duration is thus independent of the ratios
between aquifers properties, and rapidly decreases with KmB,
in contrast with the n = 4 segment. Hence, the respective du-
rations of the mid-time segments n = 4 and n = 1.5 both in-
crease with Tf but exhibit opposite relationships on KmB.

To conclude, these considerations demonstrate that the sub-
mitted models are plausible and suitable to the timelines of
real-world pumping tests under wide and realistic ranges of
hydraulic properties, except the full four-segment sequence
that rather likely occurs in truncated form as explained.
However, where only partial sequences are obtained that are
(2 – 4 – 1.5), (1.5 – 2), (4 – 1.5 – 2), (2 – 4), (4 – 2), or
eventually (4 – 1.5), incomplete, yet highly valuable, interpre-
tations may still be conducted. The (1.5 – 2) sequence by itself
makes it possible to interpret a conductive fault embedded into
an aquifer, and the calculation of the hydraulic properties of
both the aquifer and the fault. The (4 – 1.5) sequence alone
makes it possible to qualitatively identify that such a

conductive fault is not directly connected to the wellbore,
yet TmB and Tf can be quantified only if the late radial plateau
is visible, leading to the sequence (4 – 1.5 – 2). The sequence
(4 – 2) is sufficient to interpret the presence of a non-pumped,
blind and highly transmissive flow domain, and TmB can be
quantified. The (2 – 4) sequence points to the presence of a
more transmissive, non-pumped aquifer, unless a recharge
boundary is observed in the environment.

Impact of the geometrical assumptions

Where the model’s basic postulates are verified in nature,
pumping tests will render the predicted responses, under the
conditions depicted in the previous section; however, the
model is geometrically idealized. This section deciphers the
impact of the two main geometrical assumptions of the model:
(1) the interface’s verticality, and (2) the equality of lower
boundaries for the fault and surrounding aquifers. Before ev-
erything else, it should be noted that these are classical as-
sumptions of fault-aquifer flow models (Gringarten et al.
1974; Cinco-Ley and Samaniego 1981; Abbaszadeh and
Cinco-Ley 1995; Rafini and Larocque 2009). Both a slight
inclination of the interface, either faulted or not, and a fault
whose bottom is significantly deeper than embedding aqui-
fers, would be reflected by an additional time-period during
which the diffusion into the fault and/or aquifer B is not strict-
ly horizontal, that is, before the front pulse diffusion reaches
the top and bottom boundaries and practically reverts to the
horizontal. For a faulted interface, Rafini and Larocque (2012)
demonstrated that the drawdown response associated with
such a flow regime is a fault-related radial stage prior to set-
tlement of the n = 1.5 flow regime. For the non-faulted leaky
model, a spherical regime prior to the late radial stage is ex-
pected. In both cases, this would tend to delay the beginning
of the subsequent flow regimes. However, this delay is only
significant if: (1) the interface’s inclination is low (which is
outside the scope of this study); (2) the root of the fault is
greatly deeper than the substratum of surrounding aquifers;
or (3) the diffusivity of the fault or of aquifer B is very low,
leading to the late radial stage being controlled by aquifer A
properties only, since the interface acts as a no-flow boundary.
To conclude, the submitted models remain valid when the
assumption of the interface’s verticality is only partially veri-
fied or when the fault’s thickness is moderately greater than
the thickness of the aquifer. The models are not intended to be
applied to configurations with highly inclined interfaces or
high contrasts between fault and aquifer thickness. Such cases
generate 3D flow with flow regimes that are not accounted for
in this study, namely fault-related radial flow and spherical
flow. Finally, cases where the transmissivity change between
both flow domains is gradual have been assessed by Levitan
and Crawford (1995) for radially symmetric systems. This
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essentially results in a more progressive and prolonged tran-
sitional stage between both plateaux.

Data quality

It is a common statement that the quality and objectivity of
derivative analysis are highly dependent on data quality. In the
real world, the derivative diagnostic sequence may be only
partly visible or too noisy, making it difficult to properly in-
terpret the conceptual model. Noise may be due either to a
significant diffuse random heterogeneity field, or to human
errors such as pumping rate instabilities or imprecise measure-
ment. Gaussian noise may be substantially reduced by using
specifically designed differentiation algorithms (e.g., Bourdet
et al. 1989; Spane and Wurstner 1993). Conversely, sudden
changes in pumping rate will be increased by differentiation
process since it will be felt over the entire smoothing interval,
producing a signal distortion. To conclude, it is recommended
that the time-segmentation into successive flow regimes
should be performed manually, by simultaneously fitting
semi-log drawdown plots, derivative bilog plots and differen-
tiated derivative bilog plots. This makes it possible to properly
discriminate between the signal and various forms of noise,
and to distinguish between transitional stages and settled flow
regimes—a particularly sensitive task. In a second methodo-
logical step, the estimation of the flow dimension (or slope) in
each segment can be optimized using automated linear regres-
sion functions. The use of any polynomial regression function,
by its very nature, is not suitable to the approach promoted by
this study.

Uniqueness of interpretations

It is well recognized that derivative data are much more sen-
sitive to hydraulic conditions than drawdown only (e.g.,
Issaka and Ambastha 1999; Samani et al. 2006), allowing
for finer and more objective aquifer interpretations. Still, in
some cases, the differences between theoretical responses may
be very subtle and hardly visible from real data, in such man-
ner that several conceptual models may be attributed to a
single dataset. This long-debated issue of non-uniqueness re-
mains the largest difficulty in interpreting pumping tests. It
may be overcome by providing subsidiary, often geological,
inputs on hydraulic conditions. A great advantage of
hydrogeological analysis over petroleum research still lies in
the common use of observation-well responses. The numeri-
cal experiment reported here demonstrates that multi-well
analysis provides spatial insights that may be highly valuable
in adequately identifying the proposed conceptual model. Two
plots proved useful in doing so: derivative responses of obser-
vation wells versus time, eventually using a standard Cooper-
Jacob time-normalization by r2, and distance-drawdown plots

where the interpretation of two distinct straight segments is
indicative of two successive radial flow regimes.

Derivative data displaying two successive radial plateaux
have been predicted by other conceptual models: dual porosity
(Warren and Root 1963; Boulton and Streltsova 1977; Moench
1984), unconfined aquifer (Moench 1997), and BT^ shape aqui-
fers (Dewandel et al. 2014). It is worth noting that the differ-
ences between these theoretical responses lie in the shape of the
transitional stage between the plateaux. The dual porosity de-
rivative response forms a characteristic BV^ depression between
both plateaux, which is deeper in models with a pseudo-
permanent rather than transient transfer function between ma-
trix and fractured continua (e.g., Bourdet et al. 1989). Such a
feature is totally absent from predicted responses produced by
juxtaposed flow domains, providing a means of discrimination
between these conceptual models. The BT^ shape aquifer de-
scribed by Dewandel et al. (2014) addresses cases where two
symmetrical lateral domains are less conductive and shallower
than a central and deep pumped domain, representing a vertical,
deep-rooted, fault-unit crosscutting a more surficial hardrock
aquifer. Such a configuration exhibits a close analogy to the
non-leaky case analysed in the present study. The present
study’s results corroborate the Dewandel et al. model, in that
two successive radial plateaux are obtained, the late being sys-
tematically higher than the early plateau, their respective eleva-
tions being governed by the transmissivities of flow domains,
and the storativity ratio exerting a more limited influence and
essentially impacting the transitional stage. However, one sub-
mits that, since the late-time apparent transmissivity is an aver-
age of the transmissivities of both domains, transmissivity ratios
of ten or greater produce drawdown regimes at the pumping
well that are practically not impacted by the lower transmissiv-
ity value, whether this value originates from the pumped or the
non-pumped domain (Figs. 2, 3 and 4). It is therefore observed
that (1) when the non-pumped aquifer is less transmissive by a
factor of 10 or more than the pumped one, it has an influence on
the pumping well response similar to that of an impermeable
barrier (i.e., doubling the drawdown rate); and (2) the imper-
meable barrier constitutes a limiting case and thus the elevation
of the second plateau must theoretically not exceed double that
of the first plateau, under any conditions. Finally, the BT^ shape
model postulates that the faults generate a radial stabilization
rather than an n = 1.5-fractional-flow regime. From a conceptu-
al standpoint, this may relate to the wide transversal extent of
the fault, and to the highly contrasted depth ratio between the
pumped domain (in this case, the fault) and non-pumped do-
mains—a statement whose validation would require 3D simu-
lation. These two criteria could hence be adjustment variables
between the two conceptual models of faulted aquifers.

Finally, the conclusions corroborate those of Butler and Liu
(1991) in that a segmented response is predicted with the early
radial flow regime relating to the flow domain which is direct-
ly connected to the pumping well, while later regimes, radial
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and non-radial, mark the predominant influence of successive
juxtaposed flow domains on the aquifer’s response, as the
front pulse propagates. Similar to the numerical results with
faulted aquifers found for this study, the semi-analytical ap-
proach of Butler and Liu predicts a fractional n = 1.5 stage
when the strip is drastically more transmissive than surround-
ing domains. The strip indeed begins behaving like a fault
when the pressure diffusion inside it is linear and exerts a
dominant control over the geometry of the depressurization
front into the adjacent matrix domain (see Rafini and
Larocque 2009). In other words, the strip must be
depressurized over its entire transversal extent, which implies
an additional transitional time-period that delays the settle-
ment of the fractional regime. Such a strip must therefore have
a very short transversal extent and be extremely diffusive for
the fractional stage to occur, unless it is situated very close to a
pumping well.

Conclusions

This technical note numerically investigates the transient hy-
draulic behavior of the archetype aquifer model composed of
two laterally juxtaposed flow domains with non-equal prop-
erties, with or without a conductive fault at the interface. The
study focussed specifically on the flow-dimensional sequence
occurring during constant-rate pumping tests. An interpreta-
tive framework is developed that provides valuable insights
into the identification of such heterogeneous flow conditions.
A critical emphasis was placed on the real-world conditions of
application of the model, and on its unicity. It is also explained
how multi-well datasets may be used to interpret the proposed
model with greater confidence.

Key results are:

1. Two radial flow stages are predicted that correspond to
the periods before and after the moment when the non-
pumped aquifer is reached; with an optional transitional
stage marked by a flow dimension equal to 4 (negative
unit slope of the derivative signal).

2. The apparent transmissivity calculated from the second
radial plateau is equal to the arithmetic mean of the trans-
missivity of both aquifers. Hence, for transmissivity ra-
tios practically greater than ten, the least transmissive
aquifer does not exert a significant influence on the
drawdown response at the pumping well, however the
apparent transmissivity is half the higher one.

3. When the non-pumped aquifer is less transmissive than
the pumped aquifer, its influence tends to be similar to
that of an impermeable barrier (the drawdown rate is
doubled), a limiting behavior that occurs beyond trans-
missivity ratios as small as ten.

4. In contrast, when the non-pumped domain is more trans-
missive than the pumped domain (practically, more than
ten times), the aquifer’s general late-time response is
exclusively controlled by the depressurization of the
non-pumped domain.

5. This implies a counterintuitive observation to the effect
that when two straight segments are visible on time-
drawdown semi-log plots, the apparent transmissivity giv-
en by the late segment does not correspond to a bulk
transmissivity of the region that is physically investigated
but rather to that of a distant, blind, non-pumped region.

6. In such a case, the depressurization of the non-pumped
aquifer induces a sudden decrease of the drawdown rate
at the pumping well that may be misinterpreted as a
recharge frontier when using an inappropriate interpre-
tative methodology.

7. Avaluable input for confidently interpreting the promot-
ed conceptual model lies in multi-well distance-draw-
down plots that characteristically exhibit two straight
lines with either an abrupt or a gradual transition, de-
pending on the orientation of the observation well in
relation to the interface.

8. Going further, transmissivity values measured from late-
time stabilizations of the drawdown log-derivative at ob-
servation wells (OW) likely corresponds to that of the
most transmissive region of the aquifer, whether or not it
encompasses the OW; this invalidates the common pos-
tulate that OW strictly investigates the hydraulic proper-
ties of the area between the OWand the pumping well.

9. The existence of a conductive fault at the interface be-
tween both flow domains produces a characteristic inter-
mediate segment with flow dimension equal to 1.5,
whose duration is proportional to the square diffusivity
ratio between the fault and the most transmissive embed-
ding aquifer.

10. Because a conductive fault induces fast and expanded
pressure diffusion along its longitudinal axis, it is capa-
ble of provoking the depressurization of remote trans-
missive regions in such manner that the aquifer which
predominantly supplies groundwater to the pumping
well—and which governs the late radial flow regime—
is distant from the targeted site of investigation.

11. It is shown that the obtained responses are predicted for a
wide range of realistic combinations of hydraulic param-
eters; however, where the flow dimension sequence is
longer than the pump test, even a partial exhibition that
leads to an incomplete analysis may yet be valuable. In
particular, a partial exhibition is forecast in the case of a
transmissive non-pumped aquifer, where the contrast in
transmissivity exceeds three orders of magnitude due to
an extended-duration transition segment n = 4, and
where the interface is a conductive fault, as the predicted
full sequence is very long (2 – 4 – 1.5 – 2).
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From a practical standpoint, this study proposes several
recommendations for the interpretation of pumping tests
where drawdown responses display several straight segments
on semi-log plots. This work provides a general methodolog-
ical framework to understand such responses, by deciphering
the relationships between the apparent hydraulic properties
calculated from respective segments, and the real properties
of distinct hydraulic regions of the heterogeneous aquifer. In
addition, the method proposed in this study makes it possible
to identify the existence of a conductive fault at the interface
between two regions with non-equal transmissivities, based
on the analysis of the drawdown response at the pumping well
and, optionally, at observation wells.

When appropriately applied, the methodology described in
this technical note can be used to better interpret aquifer re-
sponses to pumping. It is hoped that this method be considered
when testing heterogeneous aquifers that exhibit various and
unfamiliar hydraulic behaviors, which will avoid errors
caused by the use of conventional methods, provide a better
diagnostic of the pumping test and improve heterogeneous
aquifer assessments.
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